999 resultados para Macromolecular Systems
Resumo:
Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 μM PbCl2, 0.05 μM Pb(OAc)2 and 0.01 μM HgCl2. The in vitro results obtained for PbCl2 correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 μM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 μM. Inhibition of tubulin assembly by mercury started at 2 μM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 μM Pb(NO3)2 and 0.1 μM HgCl2 in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.
Resumo:
Existing planning theories tend to be limited in their analytical scope and often fail to account for the impact of many interactions between the multitudes of stakeholders involved in strategic planning processes. Although many theorists rejected structural–functional approaches from the 1970s, this article argues that many of structural–functional concepts remain relevant and useful to planning practitioners. In fact, structural–functional approaches are highly useful and practical when used as a foundation for systemic analysis of real-world, multi-layered, complex planning systems to support evidence-based governance reform. Such approaches provide a logical and systematic approach to the analysis of the wider governance of strategic planning systems that is grounded in systems theory and complementary to existing theories of complexity and planning. While we do not propose its use as a grand theory of planning, this article discusses how structural–functional concepts and approaches might be applied to underpin a practical analysis of the complex decision-making arrangements that drive planning practice, and to provide the evidence needed to target reform of poorly performing arrangements.
Resumo:
This research contributes a fully-operational approach for managing business process risk in near real-time. The approach consists of a language for defining risks on top of process models, a technique to detect such risks as they eventuate during the execution of business processes, a recommender system for making risk-informed decisions, and a technique to automatically mitigate the detected risks when they are no longer tolerable. Through the incorporation of risk management elements in all stages of the lifecycle of business processes, this work contributes to the effective integration of the fields of Business Process Management and Risk Management.
Resumo:
In explaining how communication quality predicts TMS in multidisciplinary teams, we drew on the social identity approach to investigate the mediating role of team identification and the moderating role of professional identification. Recognizing that professional identification could trigger intergroup biases among professional subgroups, or alternatively, could bring resources to the team, we explored the potential moderating role of professional identification in the relationship between team identification and TMS. Using data collected from 882 healthcare personnel working in 126 multidisciplinary hospital teams, results supported our hypothesis that perceived communication quality predicted TMS through team identification. Furthermore, findings provided support for a resource view of professional subgroup identities with results indicating that high levels of professional identification compensated for low levels of team identification in predicting TMS. We provide recommendations on how social identities may be used to promote TMS in multidisciplinary teams.
Resumo:
This paper presents an evaluation of the effectiveness of a cooperative Intelligent Transport System (C-ITS) to reduce rear-end crashes. Two complementary simulation techniques are used to demonstrate the benefits of the C-ITS. A traffic (VEINS) and sensor (SiVIC) simulations use realistic data related to traffic/road in Brisbane’s Pacific Motorway, driver’s reaction time and injury severity to evaluate benefits. The results of our simulations show that C-ITS could reduce rear-end crash risk by providing several seconds of additional warning to drivers.
Resumo:
Culturally, philosophically and religiously diverse medical systems including Western medicine, Traditional Chinese Medicine, Ayurvedic Medicine and Homeopathic Medicine, once situated in places and times relatively unconnected from each other, currently co-exist to a point where patients must choose which system to consult. These decisions require comparative analyses, yet the divergence in key underpinning assumptions is so great that comparisons cannot easily be made. However, diverse medical systems can be meaningfully juxtaposed for the purpose of making practical decisions if relevant information is presented appropriately. Information regarding privacy provisions inherent in the typical practice of each medical system is an important element in this juxtaposition. In this paper the information needs of patients making decisions regarding the selection of a medical system are examined.
Resumo:
This paper investigates demodulation of differentially phase modulated signals DPMS using optimal HMM filters. The optimal HMM filter presented in the paper is computationally of order N3 per time instant, where N is the number of message symbols. Previously, optimal HMM filters have been of computational order N4 per time instant. Also, suboptimal HMM filters have be proposed of computation order N2 per time instant. The approach presented in this paper uses two coupled HMM filters and exploits knowledge of ...
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
Drawing from experience internationally, on recent and important developments in regulatory theory, and upon models and approaches constructed during the author's empirical research, this book addresses the question: how can law influence the internal self-regulation of organisations in order to make them more responsive to occupational health and safety concerns? In this context, it is argued that Occupational Health and Safety management systems have the potential to stimulate models of self-organisation within firms in such a way as to make them self-reflective and to encourage informal self-critical reflection about their occupational health and safety performance.
Resumo:
This paper analyses the concept of ‘work-relatedness’ in Australian workers’ compensation and occupational health and safety (OHS) systems. The concept of work-relatedness is important because it is a crucial element circumscribing the limits of the protection afforded to workers under the preventative OHS statutes, and is a threshold element which has to be satisfied before an injured or ill worker can recover statutory compensation. While the preventive and compensatory regimes do draw on some similar concepts of work-relatedness, as this paper will illustrate, there are significant differences both between, and within, these regimes.
Resumo:
The growing number of potential applications of Unmanned Aircraft Systems (UAS) in civilian operations and national security is putting pressure of National Airworthiness Authorities to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends not only on developments in improved UAS reliability and safety, but also on regulations for certification, and methodologies for operational performance and safety assessment. This paper focuses on the latter and describes progress in relation to a previously proposed framework for evaluating robust autonomy of UAS. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It discusses how the data from the proposed evaluation can be used as an aid for decision making in certification and UAS designs. Finally, it discusses challenges associated with the evaluation.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change and population growth. An approach for the identification of trigger points that allows timely and appropriate management actions to be taken to avoid catastrophic system failure is an important outcome of this project. In the current absence of a formal method to evaluate the resilience of a water supply system, the approach developed in this study was based on the characterisation of resilience of a water supply system to a range of surrogate measures. Accordingly, a set of indicators are proposed to evaluate system behaviour and logistic regression analysis was used to assess system behaviour under predicted rainfall, storage and demand conditions.
Resumo:
Prefabricated housing innovations have the potential to reduce the environmental impact of construction through improvements to efficiency and quality. The current paper presents a number of recommendations for increasing the adoption of prefabrication based on a review of published evidence. The recommendations consider multiple stakeholders including builders and other intermediaries, suppliers, end-users, as well as their interaction with the broader policy context and technical issues
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.