977 resultados para Macro-Porous Film
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
The refractive indices of crystalline phase-change films are usually obtained by thermal-induced crystallization. However, this is not accurate, because the crystallization of phase-change film in rewritable optical disks is laser induced. In this study, we use the initializer to crystallize the phase-change films. The dependence of the refractive index n and the extinction coefficient k of the phase-change films on the initialization conditions are studied. Remarkable changes of the refractive indices (especially k) are found when the initialization laser power density is 6.63 mW/mum(2) and the initialization velocity is 4.0 m/s. At the same time, the structure changes of the phase-change films are also studied. This dependence is explained by the structure change of the films. These results are significant in improving the accuracy of optical design and the thermal simulation of phase-change optical disks, as well as in the study of phase-change optical disks at shorter wavelengths. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.
Resumo:
The parameters such as quantum yield and molar absorption coefficients of the photoinitiator that are responsible for holographic sensitivity in photopolymer material are investigated with a single beam exposure experiment. The influence of exposure intensity, the concentrations of N-phenylglycine and dye on the photobleaching process of xanthenes dyes are presented. In addition, the effect of diphenyliodonium hexafluorophosphate salt on the quantum yield and molar absorption of xanthene dyes is studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We quantitatively analysed the factors contributing to the optical transmission enhancement of a sub-wavelength Sb thin film lens, using the finite-difference time-domain (FDTD) method. The results show that the transmission enhancement of the dielectric with a Gaussian distributed refractive index loaded in a sub-wavelength circular hole is not only due to the high refractive index dielectric, but also due to the specific distributions of refractive index. It is the first study about the effects of the refractive index distribution on the transmission of a sub-wavelength aperture. This kind of lens has practical applications in the very small aperture lasers and for near-field optical storage and lithography.
Resumo:
In laser applications, the size of the focus spot can be reduced beyond the diffraction limit with a thin film of strong nonlinear optical Kerr effect. We present a concise theoretical simulation of the device. The origin of the super-resolution is found to be mainly from the reshaping effect due to the strongly nonlinear refraction mediated multi-interference inside the thin film. In addition, both diffraction and self-focusing effects have been explored and found negligible for highly refractive and ultrathin films in comparison with the reshaping effect. Finally, the theoretic model has been verified in experiments with single Ge2Sb2Te5 film and SiN/Si/SiN/Ge2Sb2Te2 multilayer structures. (c) 2006 American Institute of Physics.
Resumo:
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this paper. The film shows an optical non-linear response of: 200 fs under ultrafast 80 fs-pulse excitation and the values of real and imaginary parts of non-linear susceptibility chi((3)) were 9.0 X 10(-12) and -4.0 X 10(-12) esu, respectively. The large third-order non-linearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The real and imaginary parts of third-order susceptibility of amorphous GeSe2 film were measured by the method of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultra fast pulses. The results indicated that the values of real and imaginary parts were 8.8 x 10(-12) esu and -3.0 x 10(-12) esu, respectively. An amorphous GeSe2 film also showed a very fast response within 200 fs. The ultra fast response and large third-order non-linearity are attributed to the ultra fast distortion of the electron orbits surrounding the average positions of the nucleus of Ge and Se atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 am with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this Letter. The film shows an optical nonlinear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of nonlinear susceptibility chi((3)) were 9.0 x 10(-12) esu and -4.0 x 10(-12) esu respectively. The large third-order nonlinearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.