871 resultados para Machine vision and image processing
Resumo:
Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties.
Resumo:
The results of research the intelligence multimodal man-machine interface and virtual reality means for assistive medical systems including computers and mechatronic systems (robots) are discussed. The gesture translation for disability peoples, the learning-by-showing technology and virtual operating room with 3D visualization are presented in this report and were announced at International exhibition "Intelligent and Adaptive Robots–2005".
Resumo:
The paper informs about the history of manuscript digitization in the National Library of the Czech Republic as well as about other issues concerning processing of manuscripts. The main consequence of the massive digitization and record and/or full text processing is a paradigm shift leading to the digital history.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
Most patients with Tourette syndrome report characteristic sensory experiences (premonitory urges) associated with the expression of tic symptoms. Despite the central role of these experiences to the clinical phenomenology of Tourette syndrome, little is known about their underlying brain processes. In the present article we present the results of a systematic literature review of the published studies addressing the pathophysiological mechanisms of premonitory urges. We identified some preliminary evidence for specific alterations in sensorimotor processing at both cortical and subcortical levels. A better insight into the brain correlates of premonitory urges could lead to the identification of new targets to treat the sensory initiators of tics in patients with Tourette syndrome. © 2013 - IOS Press and the authors. All rights reserved.
Classification of Paintings by Artist, Movement, and Indoor Setting Using MPEG-7 Descriptor Features
Resumo:
ACM Computing Classification System (1998): I.4.9, I.4.10.
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to determine whether there was an association between poor spoken language and atypical event-related field (ERF) responses to speech and nonspeech sounds in children with ASD (n = 14) and controls (n = 18). Data from this developmental population (ages 6-14) were analysed using a novel combination of methods to maximize the reliability of our findings while taking into consideration the heterogeneity of the ASD population. The results showed that poor spoken language scores were associated with atypical left hemisphere brain responses (200 to 400 ms) to both speech and nonspeech in the ASD group. These data support the idea that some children with ASD may have an immature auditory cortex that affects their ability to process both speech and nonspeech sounds. Their poor speech processing may impair their ability to process the speech of other people, and hence reduce their ability to learn the phonology, syntax, and semantics of their native language.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
The increasing in world population, with higher proportion of elderly, leads to an increase in the number of individuals with vision loss and cataracts are one of the leading causes of blindness worldwide. Cataract is an eye disease that is the partial or total opacity of the crystalline lens (natural lens of the eye) or its capsule. It can be triggered by several factors such as trauma, age, diabetes mellitus, and medications, among others. It is known that the attendance by ophthalmologists in rural and poor areas in Brazil is less than needed and many patients with treatable diseases such as cataracts are undiagnosed and therefore untreated. In this context, this project presents the development of OPTICA, a system of teleophthalmology using smartphones for ophthalmic emergencies detection, providing a diagnostic aid for cataract using specialists systems and image processing techniques. The images are captured by a cellphone camera and along with a questionnaire filled with patient information are transmitted securely via the platform Mobile SANA to a online server that has an intelligent system available to assist in the diagnosis of cataract and provides ophthalmologists who analyze the information and write back the patient’s report. Thus, the OPTICA provides eye care to the poorest and least favored population, improving the screening of critically ill patients and increasing access to diagnosis and treatment.
Resumo:
Peer reviewed
Resumo:
Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.