946 resultados para Machine à vecteurs de support


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many developing countries are experiencing rapid expansion in mining with associated water impacts. In most cases mining expansion is outpacing the building of national capacity to ensure that sustainable water management practices are implemented. Since 2011, Australia's International Mining for Development Centre (IM4DC) has funded capacity building in such countries including a program of water projects. Five projects in particular (principally covering experiences from Peru, Colombia, Ghana, Zambia, Indonesia, Philippines and Mongolia) have provided insight into water capacity building priorities and opportunities. This paper reviews the challenges faced by water stakeholders, and proposes the associated capacity needs. The paper uses the evidence derived from the IM4DC projects to develop a set of specific capacity-building recommendations. Recommendations include: the incorporation of mine water management in engineering and environmental undergraduate courses; secondments of staff to suitable partner organisations; training to allow site staff to effectively monitor water including community impacts; leadership training to support a water stewardship culture; training of officials to support implementation of catchment management approaches; and the empowerment of communities to recognise and negotiate solutions to mine-related risks. New initiatives to fund the transfer of multi-disciplinary knowledge from nations with well-developed water management practices are called for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The leading causes of morbidity and mortality for people in high-income countries living with HIV are now non-AIDS malignancies, cardiovascular disease and other non-communicable diseases associated with ageing. This protocol describes the trial of HealthMap, a model of care for people with HIV (PWHIV) that includes use of an interactive shared health record and self-management support. The aims of the HealthMap trial are to evaluate engagement of PWHIV and healthcare providers with the model, and its effectiveness for reducing coronary heart disease risk, enhancing self-management, and improving mental health and quality of life of PWHIV. Methods/Design The study is a two-arm cluster randomised trial involving HIV clinical sites in several states in Australia. Doctors will be randomised to the HealthMap model (immediate arm) or to proceed with usual care (deferred arm). People with HIV whose doctors are randomised to the immediate arm receive 1) new opportunities to discuss their health status and goals with their HIV doctor using a HealthMap shared health record; 2) access to their own health record from home; 3) access to health coaching delivered by telephone and online; and 4) access to a peer moderated online group chat programme. Data will be collected from participating PWHIV (n = 710) at baseline, 6 months, and 12 months and from participating doctors (n = 60) at baseline and 12 months. The control arm will be offered the HealthMap intervention at the end of the trial. The primary study outcomes, measured at 12 months, are 1) 10-year risk of non-fatal acute myocardial infarction or coronary heart disease death as estimated by a Framingham Heart Study risk equation; and 2) Positive and Active Engagement in Life Scale from the Health Education Impact Questionnaire (heiQ). Discussion The study will determine the viability and utility of a novel technology-supported model of care for maintaining the health and wellbeing of people with HIV. If shown to be effective, the HealthMap model may provide a generalisable, scalable and sustainable system for supporting the care needs of people with HIV, addressing issues of equity of access. Trial registration Universal Trial Number (UTN) U111111506489; ClinicalTrial.gov Id NCT02178930 submitted 29 June 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Public referenda have gained momentum as a democratic tool to legitimize public mega projects such as hosting the Olympic Games. Interest groups in favour of hosting the Olympics therefore try to influence voters through public campaigns that primarily focus on economic benefits. However, recent studies find no or hardly any economic impact of hosting the Olympics, instead providing evidence for a positive social impact. This raises the question whether citizens consider economic or social factors when deciding on hosting the Olympics. Based on representative survey data from 12 countries, our results suggest that economic factors can influence voting behaviour, although the influence of social factors is stronger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the types of support that teachers are accessing through the Social Network Site (SNS) 'Facebook'. It describes six ways in which teachers support one another within online groups. It presents evidence from a study of a large, open group of teachers online over a twelve week period, repeated with multiple groups a year later over a one week period. The findings suggest that large open groups in SNSs can be a useful source of pragmatic advice for teachers but that these groups are rarely a place for reflection on or feedback about teaching practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-resident workforces experience high labour turnover, which has an impact on organisational operations and affects worker satisfaction and, in turn, partners’ ability to cope with work-related absences. Research suggests that partner satisfaction may be increased by providing a range of support services, which include professional, practical, and social support. A search was conducted to identify support available for resources and health-industry non-resident workers. These were compared to the supports available to families of deployed defence personnel. They were used to compare and contrast the spread available for each industry. The resources industry primarily provided social support, and lacked an inclusion of professional and practical supports. Health-professional support services were largely directed towards extended locum support, rather than to Fly-In Fly-Out workers. Improving sources of support which parallel support provided to the Australian Defence Force is suggested as a way to increase partner satisfaction. The implications are to understand the level of uptake, perceived importance, and utilisation of such support services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ad hoc network is composed of mobile nodes without any infrastructure. Recent trends in applications of mobile ad hoc networks rely on increased group oriented services. Hence multicast support is critical for ad hoc networks. We also need to provide service differentiation schemes for different group of users. An efficient application layer multicast (APPMULTICAST) solution suitable for low mobility applications in MANET environment has been proposed in [10]. In this paper, we present an improved application layer multicast solution suitable for medium mobility applications in MANET environment. We define multicast groups with low priority and high priority and incorporate a two level service differentiation scheme. We use network layer support to build the overlay topology closer to the actual network topology. We try to maximize Packet Delivery Ratio. Through simulations we show that the control overhead for our algorithm is within acceptable limit and it achieves acceptable Packet Delivery Ratio for medium mobility applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, direct torque control (DTC) algorithms for a split-phase induction machine (SPIM) are established. An SPIM has two sets of three-phase stator windings, with a shift of thirty electrical degrees between them. The significant contributions of this paper are: 1) two new methods of DTC technique for an SPIM are developed, called Resultant Flux Control Method and Individual Flux Control Method and 2) advantages and disadvantages of both methods are discussed. High torque ripple is a disadvantage for three-phase DTC. It is found that torque ripple in an SPIM can be significantly reduced without increasing the switching frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe a system for the automatic recognition of isolated handwritten Devanagari characters obtained by linearizing consonant conjuncts. Owing to the large number of characters and resulting demands on data acquisition, we use structural recognition techniques to reduce some characters to others. The residual characters are then classified using the subspace method. Finally the results of structural recognition and feature-based matching are mapped to give final output. The proposed system Ifs evaluated for the writer dependent scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XML has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Self Adaptive Migration Model Genetic Algorithm (SAMCA)[5] and multi class Support Vector Machine (SVM) are used to learn a user model. Based on the feedback from the users the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyses support for censorship in Russia as part of the democratization process. Censorship has been an important part of Russian history and it was strengthened during the Soviet era. After the collapse of the Soviet system formal censorship was banned even though the reality has been different. Therefore it is not strange that many Russians would like to limit the freedom of the media and to censor certain topics. The views of Russians on censorship have been studied on the basis of a survey carried out in 2007. According to the results, three different dimensions of censorship were found. These dimensions include moral censorship, political censorship, and censorship of religious materials. Support for these dimensions varies on the basis of socio-demographic characteristics and media use. The article concludes that many Russians reject new phenomena, while support for the censorship of political criticism is not as high, but political censorship seems to enjoy more support among elites than among the common people.