964 resultados para MONOMER CONVERSION
Resumo:
The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.
Resumo:
116 p.
Resumo:
The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.
Resumo:
The purpose of this thesis was to examine the choice patterns that lead to conversion from Catholicism to Protestantism and the role of Vodou after conversion. This study highlights disappointment with the church as the leading cause of conversion in Haiti. Other causes significant to the study were examined. In illness and healing lie the controversies of religious conversion in Haiti. The only way to cure Satanic Illness is by resorting to magic. However, conversion to Protestantism means rejection of Vodou and all of its practice. A secondary purpose is to determine the role of Vodou after conversion. A total of 100 participants between the ages of 18 to 44 were included in this study. Seven percent (7%) converted for economic reasons, 43% selected disappointment with the church, 17% community/environment encounter, 13% sickness/near death experience, 2% economic and disappointment, 7% community/environment encounter and disappointment with the church, 9% disappointment sickness and near death experience, 1% economic and sickness near death experience, 1% economic and community/environment encounter. Findings suggest that Vodou is deeply rooted in Haitian identity, though all Haitians may not practice Vodou; but there are characteristics in the Haitian society that suggest that Haitians are Vodouisant. For the conversion process to be successful in Haiti it has to deeply acknowledged Vodou, the religion practiced by the masses in Haiti.
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
The paper presents an investigation of fix-referenced and self-referenced wave energy converters and a comparison of their corresponding wave energy conversion capacities from real seas. For conducting the comparisons, two popular wave energy converters, point absorber and oscillating water column, and their power conversion capacities in the fixed-referenced and self-referenced forms have been numerically studied and compared. In the numerical models, the deviceâ s power extractions from seas are maximized using the correspondingly optimized power take-offs in different sea states, thus their power conversion capacities can be calculated and compared. From the comparisons and analyses, it is shown that the energy conversion capacities of the self-referenced devices can be significantly increased if the motions of the device itself can be utilized for wave energy conversion; and the self-referenced devices can be possibly designed to be compliant in long waves, which could be a very beneficial factor for device survivability in the extreme wave conditions (normally long waves). In this regards, the self-referenced WECs (wave energy converters) may be better options in terms of wave energy conversion from the targeted waves in seas (frequently the most occurred), and in terms of the device survivability, especially in the extreme waves when compared to the fix-referenced counterparts.
Resumo:
Abstract : The chymase-dependant pathway responsible for converting Big ET-1 to ET-1 was established in vitro. It has only been recently, in 2009, that our group demonstrated that the conversion of Big ET-1 to ET-1 (1-31) can occur in vivo in mice (Simard et al., 2009), knowing that ET-1 (1-31) is converted to ET-1 via NEP in vivo (Fecteau et al., 2005). In addition, our laboratory demonstrated in 2013 that mMCP-4, the murine analogue of human chymase, produces ET-1 (1-31) from the Big ET-1 precursor (Houde et al. 2013). Thus far, in the literature, there are no specific characterizations of recombinant chymases (human or murine). In fact, the group of Murakami published in 1995 a study characterizing the CMA1 (human chymase) in a chymostatin-dependent fashion, using Angiotensin I as a substrate (Murakami et al., 1995). However, chymostatin is a non-specific inhibitor of chymase. It has been shown that chymostatin can inhibit elastase, an enzyme that can convert Angiotensin I to Angiotensin II (Becari et al., 2005). Based on these observations, the proposed hypothesis in the present study suggests that recombinant as well as extracted CMA1 from LUVA (human mast cell line), in addition to soluble fractions of human aortas, convert Big ET-1 into ET-1 (1-31 ) in a TY-51469 (a chymase-specific inhibitor) sensitive manner. In a second component, we studied the enzyme kinetics of CMA1 with regard to the Big ET-1 and Ang I substrate. The affinity of CMA1 against Big ET-1 was greater compared to Ang I (KM Big ET- 1: 12.55 μM and Ang I: 37.53 μM). However, CMA1 was more effective in cleaving Ang I compared to Big ET-1 (Kcat / KM Big ET-1: 6.57 x 10-5 μM-1.s-1 and Ang I: 1.8 x 10-4 ΜM-1.s- 1). In a third component involving in vivo experiments, the pressor effects of Big ET-1, ET-1 and Ang I were tested in conscious mMCP-4 KO mice compared to wild-type mice. The increase in mean arterial pressure after administration of Big ET-1 was greater in wild-type mice compared to mMCP- 4 KO mice. This effect was not observed after administration of ET-1 and / or Ang I.
Resumo:
Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.
Resumo:
This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.
Resumo:
This paper is on a wind energy conversion system simulation of a transient analysis due to a blade pitch control malfunction. The aim of the transient analysis is the study of the behavior of a back-to-back multiple point clamped five-level full-power converter implemented in a wind energy conversion system equipped with a permanent magnet synchronous generator. An alternate current link connects the system to the grid. The drive train is modeled by a three-mass model in order to simulate the dynamic effect of the wind on the tower. The control strategy is based on fractional-order control. Unbalance voltages in the DC-link capacitors are lessen due to the control strategy, balancing the capacitor banks voltages by a selection of the output voltage vectors. Simulation studies are carried out to evaluate not only the system behavior, but also the quality of the energy injected into the electric grid.
Resumo:
This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.
Resumo:
Layered Double hydroxides (LDHs) have been widely studied for their plethora of fascinating features and applications. The potentiostatic electrodeposition of LDHs has been extensively applied in the literature as a fast and direct method to substitute classical chemical routes. However, it does not usually allow for a fine control of the M(II)/M(III) ratio in the synthesized material and it is not suitable for large anions intercalation. Therefore, in this work a novel protocol has been proposed with the aim to overcome all these constraints using a method based on potentiodynamic synthesis. LDHs of controlled composition were prepared using different molar ratios of the trivalent to bivalent cations in the electrolytic solution ranging from 1:1 to 1:4. Moreover, we were able to produce electrochemically LDHs intercalated with carbon nanomaterials for the first time. A one-step procedure which contemporaneously allows for the Ni/Al-LDH synthesis, the reduction of graphene oxide (GO) and its intercalation inside the structure has been developed. The synthesised materials have been applied in several fields of interest. First of all, LDHs with a ratio 3:1 were exploited, and displayed good performances as catalysts for 5-(hydroxymethyl)furfural electro-oxidation, thus suggesting to carry out further investigation for applications in the field of industrial catalysis. The same materials, but with different metals ratios, were tested as catalysts for Oxygen Evolution Reaction, obtaining results comparable to LDHs synthesised by the classical co-precipitation method and also a better activity with respect to LDHs obtained by the potentiostatic approach. The composite material based on LDH and reduced graphene oxide was employed to fabricate a cathode of a hybrid supercapacitor coupled with an activated carbon anode. We can thus conclude that, to date, the potentiodynamic method has the greatest potential for the rapid synthesis of reproducible films of Co and Ni-based LDHs with controlled composition.
Resumo:
This thesis focus is the development of hybrid organic-inorganic systems based on Silicon Nanocrystals (SiNCs) with possible applications in the field of bioimaging and solar energy conversion. SiNCs were engineered thanks to the realization of a strong covalent Si-C bond on their surface, which allowed us to disperse them in different solvents with different final purpose. Chapter 1 introduces the basic properties of nanomaterials. Chapter 2 describes all the synthetic procedures to obtain the organic molecules-functionalized SiNCs. Chapter 3 illustrates an organic-inorganic antenna system based on SiNCs conjugated with diphenylanthracene (DPA) photoactive molecules, which was also embedded into Luminescent Solar Concentrators (LSC) made of a polymeric matrix. The optical and photovoltaic performances of this device were compared with the ones of a LSC embedded with a physical mixture made of SiNCs plus DPA at the same concentrations of the two components in the covalent system. Chapter 4 shows many different techniques to functionalize SiNCs with polyethylene glycol (PEG) chains in order to make them dispersible in water, for biomedical imaging applications. Chapter 5 presents the synthesis of dyes and/or SiNCs loaded Polymer Nanoparticles (PNPs) capable of excitation energy transfer (EET) mechanism. Chapter 6 is focused on the realization of photo-switchable systems based on azobenzene derivatives-functionalized SiNCs. These organic-inorganic hybrid materials were studied to possibly obtain a new light-driven response of SiNCs. In the end, chapter 7 reports the activity I followed in America, at The University of Texas at Austin, in the laboratory led by the professor Brian Korgel. Here I studied and compared the properties of high temperature hydrosilylated SiNCs and room temperature, radical promoted, hydrosilylated SiNCs.
Resumo:
Oxygen Reduction Reaction (ORR) requires a platinum-based catalyst to reduce the activation barrier. One of the most promising materials as alternative catalysts are carbon-based, graphene and carbon nanotubes (CNT) derivatives. ORR on a carbon-based substrate involves the less efficient two electrons process and the optimal four electrons process. New synthetic strategies to produce tunable graphene-based materials utilizing graphene oxide (GO) as a base inspired the first part of this work. Hydrogen Evolution Reaction (HER) is a slow process requiring also platinum or palladium as catalyst. In the second part of this work, we develop and use a technique for Ni nanoparticles electrodeposition using NiCl2 as precursor in the presence of ascorbate ligands. Electrodeposition of nano-nickel onto flat glassy carbon (GC) and onto nitrogen-doped reduced graphene oxide (rGO-N) substrates are studied. State of the art catalysts for CO2RR requires rare metals rhenium or rhodium. In recent years significant research has been done on non-noble metals and molecular systems to use as electro and photo-catalysts (artificial photosynthesis). As Cu-Zn alloys show good CO2RR performance, here we applied the same nanoparticle electrosynthesis technique using as precursors CuCl2 and Cl2Zn and observed successful formation of the nanoparticles and a notable activity in presence of CO2. Using rhenium complexes as catalysts is another popular approach and di-nuclear complexes have a positive cooperative effect. More recently a growing family of pre-catalysts based on the earth-abundant metal manganese, has emerged as a promising, cheaper alternative. Here we study the cooperative effects of di-nuclear manganese complexes derivatives when used as homogeneous electrocatalysts, as well as a rhenium functionalized polymer used as heterogeneous electrocatalyst.
Resumo:
The electrochemical conversion is a sustainable way for the production of added-value products, operating in mild conditions, using in-situ generated hydrogen/oxygen by water and avoiding the use of high H2/O2 pressures. The aim of this work is to investigate the electrocatalytic conversion of 5-hydroxymetilfurfural (HMF) and D-glucose, in alkaline media, using metallic open-cell foams based-catalysts. The electrochemical hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was performed using nanostructured Ag, deposited by galvanic displacement (GD) or electrodeposition (ED), on Cu foam, obtaining AgCu bimetallic nanoparticles (ED) or dendrites (GD) which enhanced electroactive surface area, charge and mass transfer, than bare foams. In diluted 0.02M HMF solutions, Ag/Cu samples selectively produce BHMF; the large surface area enhanced the productivity, compared to their 2D counterparts. Furthermore, at more concentrated solutions (0.05 – 0.10M) a gradually decrease of selectivity is observed. The performances of the electrodes is stable during the catalytic tests but a Cu-enrichment of particles occurred. The performances of Ni foam-based catalysts, obtained by calcination of Ni foam or by electrodeposition of Ni-hydroxide/Ni and Ni particle/Ni, were firstly investigated for the selective electrochemical oxidation of D-glucose toward gluconic acid (GO) and glucaric acid (GA). Then, the calcined catalyst was chosen to study the influence of the reaction conditions on the reaction mechanism. The GO and GA selectivities increase with the charge passed, while the formation of by-products from C-C cleavage/retro-aldol process is maximum at low charge. The fructose obtained from glucose isomerization favours the formation of by-products. The best glucose/NaOH ratio is between 0.5 and 0.1: higher values suppress the OER, while lower values favour the formation of low molecular weight products. The increases of the potential enhance the GO selectivity, nevertheless higher GA selectivity is observed at 0.6 – 0.7V vs SCE, confirmed by catalytic test performed in gluconate (30-35% GA selectivity).