961 resultados para MINI-CHANNELS
Resumo:
The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two most frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas were extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. — Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.
Resumo:
PURPOSE The anterior maxilla, sometimes also called premaxilla, is an area frequently requiring surgical interventions. The objective of this observational study was to identify and assess accessory bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography (CBCT). METHODS A total of 176 cases fulfilled the inclusion criteria comprising region of interest, quality of CBCT image, and absence of pathologic lesions or retained teeth. Any bone canal with a minimum diameter of 1.00 mm other than the nasopalatine canal was analyzed regarding size, location, and course, as well as patient gender and age. RESULTS A total of 67 accessory canals ≥1.00 mm were found in 49 patients (27.8%). A higher frequency of accessory canals was observed in males (33.0%) than in females (22.7%) (p = 0.130). Accessory canals occurred more frequently in older rather than younger patients (p = 0.115). The mean diameter of accessory canals was 1.31 ± 0.26 mm (range 1.01-2.13 mm). Gender and age did not significantly influence the diameter. Accessory canals were found palatal to all anterior teeth, but most frequently palatal to the central incisors. In 56.7%, the accessory canals curved superolaterally and communicated with the ipsilateral alveolar extension of the canalis sinuosus. CONCLUSIONS The study confirms the presence of bone channels within the anterior maxilla other than the nasopalatine canal. More than half of these accessory bone canals communicated with the canalis sinuosus. From a clinical perspective, studies are needed to determine the content of these accessory canals.
Resumo:
PURPOSE To investigate the adequacy of potential sites for insertion of orthodontic mini-implants (OMIs) in the anterior alveolar region (delimited by the first premolars) through a systematic review of studies that used computed tomography (CT) or cone beam CT (CBCT) to assess anatomical hard tissue parameters, such as bone thickness, available space, and bone density. MATERIALS AND METHODS MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers published between 1980 and September 2011. An extensive search strategy was performed that included the key words "computerized (computed) tomography" and "mini-implants." Information was extracted from the eligible articles for three anatomical areas: maxillary anterior buccal, maxillary anterior palatal, and mandibular anterior buccal. Quantitative data obtained for each anatomical variable under study were evaluated qualitatively with a scoring system. RESULTS Of the 790 articles identified by the search, 8 were eligible to be included in the study. The most favorable area for OMI insertion in the anterior maxilla (buccally and palatally) and mandible is between the canine and the first premolar. The best alternative area in the maxilla (buccally) and the mandible is between the lateral incisor and the canine, while in the maxillary palatal area it is between the central incisors or between the lateral incisor and the canine. CONCLUSIONS Although there is considerable heterogeneity among studies, there is a good level of agreement regarding the optimal site for OMI placement in the anterior region among investigations of anatomical hard tissue parameters based on CT or CBCT scans. In this context, the area between the lateral incisor and the first premolar is the most favorable. However, interroot distance seems to be a critical factor that should be evaluated carefully.
Resumo:
Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.
Resumo:
Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na(v)s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Navs, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury-induced neuropathic pain was used, and an Na(v)1.7-specific inhibitor, ProTxII, allowed the isolation of Na(v)1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Na(v)1.7 and Na(v)1.8 currents. The redistribution of Na(v)1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L(-/-)). SNS-Nedd4L(-/-) mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Na(v)1.7 and Na(v)1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Na(v)s and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.
Resumo:
Introduction: Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. Methods: MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched normal controls. Results: MC patients exhibited increased early supernormality, but treatment with sodium channel blockers prevented this. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. Discussion: MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that in dominant MC the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. © 2013 Wiley Periodicals, Inc.
Resumo:
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source-to-sink connectivity at the catchment-wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de-coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events.
Resumo:
Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.
Resumo:
The venom of the ctenid spider Cupiennius salei (Fig.16.1) is rich in components which belong to different functional groups. Besides low molecular mass compounds, the venom contains several disulphide-rich peptides, also called mini-proteins, which act as neurotoxins on ion channels or as enhancers of neurotoxins. Likewise, a variety of small cytolytic peptides, which destroy membranes very efficiently, and enzymes are present in the venom. Neurotoxins with cytolytic activity, cytolytic a-helical small cationic peptides and enzymes most probably attacking connective tissue and phospholipid membranes cause the overall cytotoxic effect of this venom. Synergistic and enhancing interactions between components enable the spider to achieve a maximum of toxicity with a minimum of venom quantity.
Resumo:
The purpose of the internet-based teachware mySCM is that students of economics, informatics and industrial engineering get familiar with quantitative methods for supply chain management. Input-output-relationships of various optimization methods can be detected by sampling input values, parameters, and alternative methods for the same problem. Students can gain extra benefits by passing so-called mini-exams that motivate active learning. mySCM can be used for free, round-the-clock, and any place where access to the Internet is available.
Resumo:
Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.
Resumo:
UPF1, an RNA helicase and a core factor of nonsense-mediated mRNA decay (NMD), interacts with RNA independently of the sequence context. To investigate the influence of translation on the association of UPF1 with specific reporter transcripts, UPF1 RNA immunoprecipitations (RIPs) are performed from Hela cells that either express a normally translated immunoglobulin-µ (Ig-µ) reporter (mini µ) or a version with a stable stem loop in the 5' UTR (SL mini µ) that efficiently inhibit translation initiation (Zund et al., 2013). Both the cloning of the SL mini µ reporter construct and the UPF1 RIP experiment are described in detail.
Resumo:
Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.