989 resultados para METHANOL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel bonded phase for reversed-phase HPLC was synthesized in two steps. Octylamine was first reacted with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (beta -ECTS) and then the intermediate product was coupled onto porous silica. The prepared packing was characterized by elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes and methanol-water as binary mobile phase. The results showed that the stationary phase has excellent chromatographic properties and is resistant to hydrolysis between pH = 2 similar to 8. It can be used efficiently for the separation of basic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an urgent need for thorough analysis of Radix astragali, a widely used Chinese herb, for quality control purposes. This paper describes the development of a total analytical method for Radix astragali extract, a multi-component complex mixture. Twenty-four components were separated step by step from the extract using a series of isocratic isopropanol-methanol elutions, and then 42 components were separated similarly using methanol-water elutions. Based on the log k(w) and -S of the 66 components obtained from the above procedure and the optimization software developed in our laboratory, an optimum elution program consisting of seven methanol-water segments and four isopropanol-methanol segments was developed to finish the task of analyzing the total components in a single run. Under optimized gradient conditions, the sample of Radix astragali extract was analyzed. As expected, most of the components were well separated and the experimental chromatogram was in a good agreement with the predicted one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acidic properties of TS-1 and Silicalite-I zeolites have been investigated by the solid-state MAS NMR technique capable of in situ sample pretreatment. As shown by a combination of the P-31 MAS NMR and H-1 MAS NMR techniques with trimethylphosphine, not only Bronsted acid sites but also Lewis acid sites exist in the TS-1 zeolites. Moreover, TS-1 zeolite is more acidic compared with Silicalite-1. The H-1, Si-29 MAS NMR spectra and the resonance related to Bronsted acid species in the P-31 MAS NMR spectra demonstrate clearly that the presence of titanium in the framework results in the formation of a new hydroxy group, titanols, which is more acidic than silanols of Silicalite-1. The P-31 MAS NMR measurements also illustrate convincingly the existence of at least two different Lewis acid species on the TS-1 zeolites. The conversion of propylene oxide into methoxypropanol catalyzed by TS-1 or Silicalite-I zeolite in methanol solution as a test reaction has also been described. With the increase of titanium in zeolite, TS-1 appears to have a higher activity during the reaction of propylene oxide to methoxypropanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel strategy for the screening and analysis of biologically active compounds in traditional Chinese medicine by molecular biochromatography is proposed. Molecular biochromatography with human serum albumin (HSA) immobilized on silica as stationary phase was used to screen and analyse the bioactive compounds in the typical Chinese medicine of Angelica sinensis (Oliv.) Diels. Ten peaks showed retention on this column, which is based on their affinity for HSA. Ferulic acid and liguistilide were identified as the principal active components, which agrees very well with the results in the literature. A quality control method was also developed based on the simultaneous determination the concentrations of ferulic acid and liguistilide in solutions of Angelica sinensis (Oliv.) Diels extracted with water and methanol. It was observed that the concentrations of ferulic acid and liguistilide in solution extracted with methanol were 2 and 53 times higher, respectively, than those with water. It was shown that molecular biochromatography is an effective way of analysing and screening biologically active compounds in traditional Chinese medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influences of seven organic modifiers, including urea, methanol (MeOH), dioxane (DIO), tetrahydrofuran (THF), acetonitrile (ACN), 1-propanol (1-PrOH) and 2-propanol (2-PrOH), on the solute retention and the electrokinetic migrations in micellar electrokinetic capillary chromatography (MEKC) are investigated with sodium dodecyl sulfate (SDS) micelle as pseudostationary phase. It is observed that in the limited concentration ranges used in the MEKC systems the effect of organic modifier concentration on the retention can be described by the equation logk'=logk'(w)-SC for most binary aqueous-organic buffer, but deviations from this retention equation are observed at ACN and particularly THF as organic modifiers. With parameter S as a measure of the elutropic strength, the elutropic strength of the organic modifiers is found to follow a general order urea

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Cu-Zn-Al methanol catalyst combined with HZSM-5 was used for dimethyl ether (DME) synthesis from a syngas containing nitrogen, which was produced by air-partial oxidation of methane (air-POM). Air-POM occurred at 850 degreesC, 0.8 MPa, CH4/air/H2O/CO2 ratio of 1/2.4/0.8/0.4 over a Ni-based catalyst modified by magnesia and lanthanum oxide with 96% CH4 conversion and constantly gave syngas with a H-2/CO ratio of 2/1 during a period of 450 h. The obtained N-2-containing syngas was used directly for DME synthesis. About 90% CO per-pass conversion, 78% DME selectivity and 70% DME yield could be achieved during 450 h stability testing under the pressure of 5.0 MPa. the temperature of 240 degreesC and the space velocity of 1000 h(-1). (C) 2002 Elsevier Science B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu-0 <-> Cu+1 redox cycle model was put forward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthogonal design and uniform design were used for the optimization of separation of enantiomers using 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD) as a chiral selector by capillary zone electrophoresis, The concentration of DM-beta-CD, buffer pH, running voltage, and capillary temperature were selected as variable parameters, their different effects on peak resolution were studied by the design methods. It was concluded that orthogonal design offers a rapid and efficient means for testing the importance of individual parameters and for determining the optimum operating conditions. However, for a large number of both factors and levels, uniform design is more efficient, The effect of addition of methanol and citric acid buffer on the separation of enantiomers was also examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soil column chromatographic method was developed to measure the capacity factors (k') of pesticides, in which soil acted as a stationary phase and methanol-water mixture as an eluent. The k' values of eight pesticides, including three insecticides (methiocarb, azinphos-methyl, fenthion), four fungicides (triadimenol, fuberidazole, tebuconazole, pencycuron), and one herbicide (atrazine), were found to be well fitted to a retention equation, ln k'=ln k(w)'-S-phi. Due to similar interactions of solutes with soil and solvent in both sorption determination and retention experiment, log k' has a good linear correlation with log K-oc for the eight pesticides from different classes, in contrast with poor correlation between log k' from C-18 column and log K-oc. So the method provides a tool for rapid estimation of K-oc from experimental k'. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts were investigated by the TPR (temperature programmed reaction) method, and the active sites were studied by CO-TPD, TPSR (temperature programmed surface reaction of preadsorbed CO by H-2) and XPS techniques. The TPR results indicated that ethanol and acetaldehyde might be formed through different intermediates, whereas ethanol and methanol might result from the same intermediate. Results of CO-TPD, TPSR, and XPS showed that on the Rh-based catalyst, the structure of the active sites for the formation of C-2-oxygenates is ((RhxRhy+)-Rh-0)-O-Mn+ (M=Mn or Zr, x>>y, 2 less than or equal ton less than or equal to4). The tilt-adsorbed CO species is the main precursor for CO dissociation and the precursor for the formation of ethanol and methanol. Most of the linear and geminal adsorbed CO species desorbed below 500 K. Based on the suggested model of the active sites, detailed mechanisms for the formation of acetaldehyde and ethanol are proposed. Ethanol is formed by direct hydrogenation of the tilt-adsorbed CO molecules, followed by CH2 insertion into the surface CH2-O species and the succeeding hydrogenation step. Acetaldehyde is formed through CO insertion into the surface CH3-Rh species followed by hydrogenation, and the role of the promoters was to stabilize the intermediate of the surface acetyl species. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil organic partition coefficient (K-oc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting K-oc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the K-oc of hydrophobic organic chemicals (HOCs), over a log K-oc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k(w)') could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k') with various volume fractions of methanol (phi). The important effects of solute activity coefficients in water on k(w)' and K-oc were illustrated. Hence, the correlation between log K-oc and log k(w)' (and log k') exists in the soil. The correlation coefficient (r) of the log K-oc vs. log k(w)' correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log K-oc-log k' correlations were no less than 0.968, with phi ranging from 0 to 0.50. The smaller the phi, the higher the r. Therefore, it is recommended that the eluent of smaller phi, such as water, be used for accurately estimating K-oc. Correspondingly, the r value of the log K-oc-log k(w)' correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict K-oc indirectly from a correlation with k(w)' than the reversed-phase liquid chromatographic (RPLC) one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.