974 resultados para MEDIATED GLUCOSE DISPOSAL
Resumo:
Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution.
Resumo:
The thermogenic response to a 100 g oral glucose load was studied by indirect calorimetry in 13 older persons (age range, 38-68 years) and compared with that of 16 young matched controls of similar body weight (age range, 19-30 years). The glucose-induced thermogenesis measured over 180 min and expressed as a per cent of the energy content of the glucose load was found to be reduced in the older subjects, i.e., 5.8 +/- 0.3 per cent vs 8.6 +/- 0.7 per cent, P less than 0.002). This was also accompanied by a significant decrease in the glucose oxidation rate when averaged over the same three-hour period following the glucose load, i.e., 153 mg/min vs 213 mg/min in the control subjects (P less than 0.001) despite a similar time course of glycemia. This study suggests that the thermogenic response to an oral glucose load is blunted in older people, and this may represent an additional factor that contributes to the decreased energy requirement with age and therefore to the increased propensity to obesity if energy intake is not adjusted.
Resumo:
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.
Resumo:
BACKGROUND: The efficacy of cardiac pacing for prevention of syncopal recurrences in patients with neurally mediated syncope is controversial. We wanted to determine whether pacing therapy reduces syncopal recurrences in patients with severe asystolic neurally mediated syncope. METHODS AND RESULTS: Double-blind, randomized placebo-controlled study conducted in 29 centers in the Third International Study on Syncope of Uncertain Etiology (ISSUE-3) trial. Patients were ≥40 years, had experienced ≥3 syncopal episodes in the previous 2 years. Initially, 511 patients, received an implantable loop recorder; 89 of these had documentation of syncope with ≥3 s asystole or ≥6 s asystole without syncope within 12 ± 10 months and met criteria for pacemaker implantation; 77 of 89 patients were randomly assigned to dual-chamber pacing with rate drop response or to sensing only. The data were analyzed on intention-to-treat principle. There was syncope recurrence during follow-up in 27 patients, 19 of whom had been assigned to pacemaker OFF and 8 to pacemaker ON. The 2-year estimated syncope recurrence rate was 57% (95% CI, 40-74) with pacemaker OFF and 25% (95% CI, 13-45) with pacemaker ON (log rank: P=0.039 at the threshold of statistical significance of 0.04). The risk of recurrence was reduced by 57% (95% CI, 4-81). Five patients had procedural complications: lead dislodgment in 4 requiring correction and subclavian vein thrombosis in 1 patient. CONCLUSIONS: Dual-chamber permanent pacing is effective in reducing recurrence of syncope in patients ≥40 years with severe asystolic neurally mediated syncope. The observed 32% absolute and 57% relative reduction in syncope recurrence support this invasive treatment for the relatively benign neurally mediated syncope. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00359203.
Audit report on the Delaware County Solid Waste Disposal Commission for the year ended June 30, 2013
Resumo:
Audit report on the Delaware County Solid Waste Disposal Commission for the year ended June 30, 2013
Resumo:
Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.
Resumo:
How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released from intestine after a meal, producing a glucose-dependent insulin secretion. The GIP receptor (GIPR) is expressed on pyramidal neurons in the cortex and hippocampus, and GIP is synthesized in a subset of neurons in the brain. However, the role of the GIPR in neuronal signaling is not clear. In this study, we used a mouse strain with GIPR gene deletion (GIPR KO) to elucidate the role of the GIPR in neuronal communication and brain function. Compared with C57BL/6 control mice, GIPR KO mice displayed higher locomotor activity in an open-field task. Impairment of recognition and spatial learning and memory of GIPR KO mice were found in the object recognition task and a spatial water maze task, respectively. In an object location task, no impairment was found. GIPR KO mice also showed impaired synaptic plasticity in paired-pulse facilitation and a block of long-term potentiation in area CA1 of the hippocampus. Moreover, a large decrease in the number of neuronal progenitor cells was found in the dentate gyrus of transgenic mice, although the numbers of young neurons was not changed. Together the results suggest that GIP receptors play an important role in cognition, neurotransmission, and cell proliferation.
Resumo:
In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.
Resumo:
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Resumo:
Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.
Resumo:
Seven obese Type 2 diabetic patients were studied for two 4-h periods after ingestion of a glucose load to determine the effects of preprandial subcutaneous injection of Insulin Lispro (5 min before the meal) or regular insulin (20 min before the meal) on glucose metabolism. Glucose production and utilisation were measured using a dual isotope method. After Lispro, the mean postprandial increase in plasma glucose was 29% lower and the increase in insulin concentration 25% higher than after regular insulin (p < 0.05). Suppression of endogenous glucose production was similar with both types of insulin. Thus, preprandial injection of Lispro reduced postprandial glucose increments in Type 2 diabetic patients as compared to regular insulin. This effect is best explained by the increased postprandial bioavailability of Lispro.
Resumo:
Background Impaired glucose regulation (IGR) is associated with detrimental cardiovascular outcomes such as cardiovascular disease risk factors (CVD risk factors) or intima-media thickness (IMT). Our aim was to examine whether these associations are mediated by body mass index (BMI), waist circumference (waist) or fasting serum insulin (insulin) in a population in the African region. Methods Major CVD risk factors (systolic blood pressure, smoking, LDL-cholesterol, HDL-cholesterol,) were measured in a random sample of adults aged 25-64 in the Seychelles (n=1255, participation rate: 80.2%). According to the criteria of the American Diabetes Association, IGR was divided in four ordered categories: 1) normal fasting glucose (NFG), 2) impaired fasting glucose (IFG) and normal glucose tolerance (IFG/NGT), 3) IFG and impaired glucose tolerance (IFG/IGT), and 4) diabetes mellitus (DM). Carotid and femoral IMT was assessed by ultrasound (n=496). Results Age-adjusted levels of the major CVD risk factors worsened gradually across IGR categories (NFG < IFG/NGT < IFG/IGT < DM), particularly HDL-cholesterol and blood pressure (p for trend <0.001). These relationships were marginally attenuated upon further adjustment for waist, BMI or insulin (whether considered alone or combined) and most of these relationships remained significant. With regards to IMT, the association was null with IFG/NGT, weak with IFG/IGT and stronger with DM (all more markedly at femoral than carotid levels). The associations between IMT and IFG/IGT or DM (adjusted by age and major CVD risk factors) decreased only marginally upon further adjustment for BMI, waist or insulin. Further adjustment for family history of diabetes did not alter the results. Conclusions We found graded relationships between IGR categories and both major CVD risk factors and carotid/femoral IMT. These relationships were only partly accounted for by BMI, waist and insulin. This suggests that increased CVD-risk associated with IGR is also mediated by factors other than the considered markers of adiposity and insulin resistance. The results also imply that IGR and associated major CVD risk factors should be systematically screened and appropriately managed.
Resumo:
RÉSUMÉ Les kinases activées par des mitogènes (MAPKs) constituent une importante famille d'enzymes conservée dans l'évolution. Elles forment un réseau de signalisation qui permet à la cellule de réguler spécifiquement divers processus impliqués dans la différenciation, la survie ou l'apoptose. Les kinases formant le module MAPK sont typiquement disposées en cascades de trois partenaires qui s'activent séquentiellement par phosphorylation. Le module minimum est constitué d'une MAPK kinase kinase (MAPKKK), d'une MAPK kinase (MAPKK) et d'une MAPK. Une fois activée, la MAPK phosphoryle différents substrats tels que des facteurs de transcription ou d'autres protéines. Chez les mammifères, trois groupes principaux de MAPKs ont été identifiés. Il s'agit du groupe des kinases régulées par des signaux extracellulaires du type «mitogènes » (ERK), ainsi que des groupes p38 et cJun NH2-terminal kinase (JNK), ou SAPK pour stress activated protein kinase, plutôt activées par des stimuli de type «stress ». De nombreuses études ont impliqué JNK dans la régulation de différents processus physiologiques et pathologiques, comme le diabète, les arthrites rhumatoïdes, l'athérosclérose, l'attaque cérébrale, les maladies de Parkinson et d'Alzheimer. JNK, en particulier joue un rôle dans la mort des cellules sécrétrices d'insuline induite par l'interleukine (IL)-1 β, lors du développement du diabète de type 1. IB1 est une protéine scaffold (échafaud) qui participe à l'organisation du module de JNK. IB1 est fortement exprimée dans les neurones et les cellules β du pancréas. Elle a été impliquée dans la survie des cellules, la régulation de l'expression du transporteur du glucose de type 2 (Glut-2) et dans le processus de sécrétion d'insuline glucose-dépendante. IBl est caractérisée par plusieurs domaines d'interaction protéine-protéine : un domaine de liaison à JNK (JBD), un domaine homologue au domaine 3 de Src (SH3) et un domaine d'interaction avec des tyrosines phosphorylées (PID). Des partenaires d'IB1, incluant les membres de la familles des kinases de lignée mélangée (MLKs), la MAPKK MKK7, la phosphatase 7 des MAPKs (MKP-7) ainsi que la chaîne légère de la kinésine, ont été isolés. Tous ces facteurs, sauf les MLKs et MKK7 interagissent avec le domaine PID ou l'extrême partie C-terminale d'IBl (la chaîne légère de la kinésine). Comme d'autres protéines scaffolds déjà décrites, IBl et un autre membre de la famille, IB2, sont capables d'homo- et d'hétérodimériser. L'interaction a lieu par l'intermédiaire de leur région C-terminale, contenant les domaines SH3 et PID. Mais ni le mécanisme moléculaire, ni la fonction de la dimérisation n'ont été caractérisés. Le domaine SH3 joue un rôle central lors de l'assemblage de complexes de macromolécules impliquées dans la signalisation intracellulaire. Il reconnaît de préférence des ligands contenant un motif riche en proline de type PxxP et s'y lie. Jusqu'à maintenant, tous les ligands isolés se liant à un domaine SH3 sont linéaires. Bien que le domaine SH3 soit un domaine important de la transmission des signaux, aucun partenaire interagissant spécifiquement avec le domaine SH3 d'IB1 n'a été identifié. Nous avons démontré qu'IBl homodimérisait par un nouveau set unique d'interaction domaine SH3 - domaine SH3. Les études de cristallisation ont démontré que l'interface recouvrait une région généralement impliquée dans la reconnaissance classique d'un motif riche en proline de type PxxP, bien que le domaine SH3 d'IB1 ne contienne aucun motif PxxP. L'homodimère d'IB1 semble extrêmement stable. Il peut cependant être déstabilisé par trois mutations ponctuelles dirigées contre des résidus clés impliqués dans la dimérisation. Chaque mutation réduit l'activation basale de JNK dépendante d'IB 1 dans des cellules 293T. La déstabilisation de la dimérisation induite par la sur-expression du domaine SH3, provoque une diminution de la sécrétion d'insuline glucose dépendant. SUMMARY Mitogen activated kinases (MAPK) are an important and conserved enzyme family. They form a signaling network required to specifically regulate process involved in cell differentiation, proliferation or death. A MAPK module is typically organized in a threekinase cascade which are activated by sequential phosphorylation. The MAPK kinase kinase (MAPKKK), the MAPK kinase (MAPKK) and the MAPK constitute the minimal module. Once activated, the MAPK phosphorylates its targets like transcription factors or other proteins. In mammals, three major groups of MAPKs have been identified : the group of extra-cellular regulated kinase (ERK) which is activated by mitogens and the group of p38 and cJun NH2-terminal kinase (JNK) or SAPK for stress activated protein kinase, which are activated by stresses. Many studies implicated JNK in many physiological or pathological process regulations, like diabetes, rheumatoid arthritis, arteriosclerosis, strokes or Parkinson and Alzheimer disease. In particular, JNK plays a crucial role in pancreatic β cell death induced by Interleukin (IL)-1 β in type 1 diabetes. Islet-brain 1 (IB 1) is a scaffold protein that interacts with components of the JNK signal-transduction pathway. IB 1 is expressed at high levels in neurons and in pancreatic β-cells, where it has been implicated in cell survival, in regulating expression of the glucose transporter type 2 (Glut-2) and in glucose-induced insulin secretion. It contains several protein-protein interaction domains, including a JNK-binding domain (JBD), a Src homology 3 domain (SH3) and a phosphotyrosine interaction domain (PID). Proteins that have been shown to associate with IB 1 include members of the Mixed lineage kinase family (MLKs), the MAPKK MKK7, the MAPK phosphatase-7 MKP7, as well as several other ligands including kinesin light chain, LDL receptor related family members and the amyloid precursor protein APP. All these factors, except MLK3 and MKK7 have been shown to interact with the PID domain or the extreme C-terminal part (Kinesin light chain) of IB 1. As some scaffold already described, IB 1 and another member of the family, IB2, have previously been shown to engage in oligomerization through their respective C-terminal regions that include the SH3 and PID domains. But neither the molecular mechanisms nor the function of dimerization have yet been characterized. SH3 domains are central in the assembly of macromolecular complexes involved in many intracellular signaling pathways. SH3 domains are usually characterized by their preferred recognition of and association with canonical PxxP motif. In all these cases, a single linear sequence is sufficient for binding to the SH3 domain. However, although SH3 domains are important elements of signal transduction, no protein that interacts specifically with the SH3 domain of IB 1 has been identified so far. Here, we show that IB 1 homodimerizes through a navel and unique set of SH3-SH3 interactions. X-ray crystallography studies indicate that the dieter interface covers a region usually engaged in PxxP-mediated ligand recognition, even though the IB 1 SH3 domain lacks this motif. The highly stable IB 1 homodimer can be significantly destabilized in vitro by individual point-mutations directed against key residues involved in dimerization. Each mutation reduces IB 1-dependent basal JNK activity in 293T cells. Impaired dimerization induced by over-expression of the SH3 domain also results in a significant reduction in glucose-dependent insulin secretion in pancreatic β-cells.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with beta-TrCP1. Mammals possess a homologue of beta-TrCP1, HOS, which is also named beta-TrCP2. We show by coimmunoprecipitation experiments that beta-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as beta-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous beta-TrCP1 or beta-TrCP2 but instead required the two genes to be silenced simultaneously.