942 resultados para MECHANICAL VENTILATION, ADAPTIVE SUPPORT,


Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title provided by Bettye Lane

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane. Digital reproduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inscription: Verso: International Women's Day march, New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For primates, and other arboreal mammals, adopting suspensory locomotion represents one of the strategies an animal can use to prevent toppling off a thin support during arboreal movement and foraging. While numerous studies have reported the incidence of suspensory locomotion in a broad phylogenetic sample of mammals, little research has explored what mechanical transitions must occur in order for an animal to successfully adopt suspensory locomotion. Additionally, many primate species are capable of adopting a highly specialized form of suspensory locomotion referred to as arm-swinging, but few scenarios have been posited to explain how arm-swinging initially evolved. This study takes a comparative experimental approach to explore the mechanics of below branch quadrupedal locomotion in primates and other mammals to determine whether above and below branch quadrupedal locomotion represent neuromuscular mirrors of each other, and whether the patterns below branch quadrupedal locomotion are similar across taxa. Also, this study explores whether the nature of the flexible coupling between the forelimb and hindlimb observed in primates is a uniquely primate feature, and investigates the possibility that this mechanism could be responsible for the evolution of arm-swinging.

To address these research goals, kinetic, kinematic, and spatiotemporal gait variables were collected from five species of primate (Cebus capucinus, Daubentonia madagascariensis, Lemur catta, Propithecus coquereli, and Varecia variegata) walking quadrupedally above and below branches. Data from these primate species were compared to data collected from three species of non-primate mammals (Choloepus didactylus, Pteropus vampyrus, and Desmodus rotundus) and to three species of arm-swinging primate (Hylobates moloch, Ateles fusciceps, and Pygathrix nemaeus) to determine how varying forms of suspensory locomotion relate to each other and across taxa.

From the data collected in this study it is evident the specialized gait characteristics present during above branch quadrupedal locomotion in primates are not observed when walking below branches. Instead, gait mechanics closely replicate the characteristic walking patterns of non-primate mammals, with the exception that primates demonstrate an altered limb loading pattern during below branch quadrupedal locomotion, in which the forelimb becomes the primary propulsive and weight-bearing limb; a pattern similar to what is observed during arm-swinging. It is likely that below branch quadrupedal locomotion represents a “mechanical release” from the challenges of moving on top of thin arboreal supports. Additionally, it is possible, that arm-swinging could have evolved from an anatomically-generalized arboreal primate that began to forage and locomote below branches. During these suspensory bouts, weight would have been shifted away from the hindlimbs towards forelimbs, and as the frequency of these boats increased the reliance of the forelimb as the sole form of weight support would have also increased. This form of functional decoupling may have released the hindlimbs from their weight-bearing role during suspensory locomotion, and eventually arm-swinging would have replaced below branch quadrupedal locomotion as the primary mode of suspensory locomotion observed in some primate species. This study provides the first experimental evidence supporting the hypothetical link between below branch quadrupedal locomotion and arm-swinging in primates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/purpose: Getting off the ventilator is an important patient-centred outcome for patients with acute respiratory failure. It signifies an improvement in patient condition, enables easier communication, reduces fear and anxiety and consequently a reduced requirement for sedatives. Weaning from ventilation therefore is a core ICU nursing task that is addressed in this presentation.
Presentation description: There are different schools of thought on when ventilator weaning begins including: (a) from intubation with titration of support; and (b) only when the patient’s condition improves. There are also different schools of thought on how to wean including gradual reductions in ventilator support to: (a) a low level consistent with extubation; or (b) to a level to attempt a spontaneous breathing trial followed by extubation if successful. Regardless of the approach, what is patient-relevant is the need to determine early when the patient may be ‘ready’ to discontinue ventilation. This time point can be assessed using simple criteria and should involve all ICU staff to the level of their experience. This presentation challenges the notion that only senior nurses or nurses with a ‘weaning course’ should be involved in the weaning process and proposes opportunities for engaging nurses with all levels of experience.
Conclusion: An ICU nursing taskforce that is focused and engaged in determining patient readiness for weaning can make a strong contribution to patient-relevant outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Non-invasive ventilation (NIV) is increasingly used in patients with Acute Respiratory Distress Syndrome (ARDS). Whether, during NIV, the categorization of ARDS severity based on the PaO2/FiO2 Berlin criteria is useful is unknown. The evidence supporting NIV use in patients with ARDS remains relatively sparse.

Methods: The Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study described the management of patients with ARDS. This sub-study examines the current practice of NIV use in ARDS, the utility of the PaO2/FiO2 ratio in classifying patients receiving NIV and the impact of NIV on outcome.

Results: Of 2,813 patients with ARDS, 436 (15.5%) were managed with NIV on days 1 and 2 following fulfillment of diagnostic criteria. Classification of ARDS severity based on PaO2/FiO2 ratio was associated with an increase in intensity of ventilatory support, NIV failure, and Intensive Care Unit (ICU) mortality. NIV failure occurred in 22.2% of mild, 42.3% of moderate and 47.1% of patients with severe ARDS. Hospital mortality in patients with NIV success and failure was 16.1 % and 45.4%, respectively. NIV use was independently associated with increased ICU (HR 1.446; [1.159-1.805]), but not hospital mortality. In a propensity matched analysis, ICU mortality was higher in NIV than invasively ventilated patients with a PaO2/FiO2 lower than 150 mmHg.

Conclusions: NIV was used in 15% of patients with ARDS, irrespective of severity category. NIV appears to be associated with higher ICU mortality in patients with a PaO2/FiO2 lower than 150 mmHg.

Trial Registration: ClinicalTrials.gov NCT02010073

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary objective: To examine emotional coping and support needs in children of persons with acquired brain injury, with a view to understanding what interventions would be helpful for these children. Design: The study was qualitative, using a thematic analysis approach. Methods and procedure: Six children between 9 and 18 years of age, six parents (three with ABI), and three support workers were interviewed either at home or at a support centre, using a semi-structured interview guide. Results: Children reported using a variety of adaptive and maladaptive emotional coping strategies, but were consistent in expressing a need for credible validation, i.e. sharing experiences with peers. The results are presented under four overarching themes: difficulties faced; emotions experienced; coping strategies; and reported support needs. Conclusions: The results reveal an interaction between the child’s experiences of complex loss that is difficult to acknowledge, emotional distancing between parent and child, and the children’s need for credible validation. All children expressed a desire for talking to peers in a similar situation to themselves, but had not had this opportunity. Interventions should set up such peer interaction to create credible validation for the specific distress suffered by this population.