928 resultados para MACROSCOPIC QUANTUM PHENOMENA IN MAGNETIC SYSTEMS
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
The encapsulation of magnetic transition-metal (TM) clusters inside carbon cages (fullerenes, nanotubes) has been of great interest due to the wide range of applications, which spread from medical sensors in magnetic resonance imaging to photonic crystals. Several theoretical studies have been reported; however, our atomistic understanding of the physical properties of encapsulated magnetic TM 3d clusters is far from satisfactory. In this work, we will report general trends, derived from density functional theory within the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (PBE), for the encapsulation properties of the TMm@C-n (TM = Fe, Co, Ni; m = 2-6, n = 60,70,80,90) systems. Furthermore, to understand the role of the van der Waals corrections to the physical properties, we employed the empirical Grimme's correction (PBE + D2). We found that both PBE and PBE + D2 functionals yield almost the same geometric parameters, magnetic and electronic properties, however, PBE + D2 strongly enhances the encapsulation energy. We found that the center of mass of the TMm clusters is displaced towards the inside C-n surfaces, except for large TMm clusters (m = 5 and 6). For few cases, e. g., Co-4 and Fe-4, the encapsulation changes the putative lowest-energy structure compared to the isolated TMm clusters. We identified few physical parameters that play an important role in the sign and magnitude of the encapsulation energy, namely, cluster size, fullerene equatorial diameter, shape, curvature of the inside C-n surface, number of TM atoms that bind directly to the inside C-n surface, and the van der Waals correction. The total magnetic moment of encapsulated TMm clusters decreases compared with the isolated TMm clusters, which is expected due to the hybridization of the d-p states, and strongly depends on the size and shape of the fullerene cages.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
This dissertation is devoted to the experimental exploration of the propagation of elastic waves in soft mesoscopic structures with submicrometer dimensions. A strong motivation of this work is the large technological relevance and the fundamental importance of the subject. Elastic waves are accompanied by time-dependent fluctuations of local stress and strain fields in the medium. As such, the propagation phase velocities are intimately related to the elastic moduli. Knowledge of the elastic wave propagation directly provides information about the mechanical properties of the probed mesoscopic structures, which are not readily accessible experimentally. On the other hand, elastic waves, when propagating in an inhomogeneous medium with spatial inhomogeneities comparable to their wavelength, exhibit rather rich behavior, including the appearance of novel physical phenomena, such as phononic bandgap formation. So far, the experimental work has been restricted to macroscopic structures, which limit wave propagation below the KHz range. It was anticipated that an experimental approach capable of probing the interplay of the wave propagation with the controlled mesoscopic structures would contribute to deeper insights into the fundamental problem of elastic wave propagation in inhomogeneous systems. The mesoscopic nature of the structures to be studied precludes the use of traditional methods, such as sound transmission, for the study of elastic wave propagation. In this work, an optical method utilizing the inelastic scattering of photons by GHz frequency thermally excited elastic waves, known as Brillouin light scattering spectroscopy (BLS), was employed. Two important classes of soft structures were investigated: thin films and colloidal crystals. For the former, the main interest was the effect of the one-dimensional (1D) confinement on the wave propagation due to the presence of the free-surface or interface of the layer and the utilization of these waves to extract relevant material parameters. For the second system, the primary interest was the interaction of the elastic wave and the strong scattering medium with local resonance units in a three-dimensional (3D) periodic arrangement.
Resumo:
Feste Lösungen homogen dispergierter Wirkstoffmoleküle in amorphen Polymermatrizen sind wichtige Materialien in vielen pharmazeutischen Anwendungen, bei denen eine kontrollierte Abgabe wasserunlöslicher Wirkstoffe in wässrige Systeme eine Rolle spielt. Die intermolekulare Bindungs-stärke zwischen Polymer- und Wirkstoffmolekülgruppen bestimmt die Stabilität der festen Lösung und steuert somit die biologische Aktivität der Wirkstoffmoleküle. In festen Lösungen, die aus acryl-säurehaltigen Copolymeren (Protonendonoren) und basischen Wirkstoffmolekülen (Protonenakzepto-ren) hergestellt werden, sind intermolekulare Wasserstoffbrücken zwischen den Systemkomponenten Triebkraft für die Bildung einer stabilen homogenen Dispersion und für die Entstehung struktureller Merkmale zwischen den Molekülgruppen der Systemkomponenten. Zudem ist die Bindungsstärke der Wasserstoffbrücken im Hinblick auf die kontrollierte Abgabe der Wirkstoffe von Bedeutung. Da dynamische chemische Gleichgewichte bei der Bildung der Wasserstoffbrücken eine wichtige Rolle spielen müssen neben strukturellen Parametern auch dynamische Faktoren beleuchtet werden. Ziel dieser Arbeit ist neben der Ermittlung von intermolekularen Bindungsstärken vor allem die Identifika-tion struktureller Verhältnisse zwischen den Systemkomponenten auf molekularer Ebene. Die Be-stimmung der Abhängigkeit dieser Parameter von der Struktur der verwendeten Polymere und einer Vielzahl weiterer Einflüsse wie z.B. Feuchtigkeit, Lagerdauer oder Wirkstoffkonzentration soll ein kontrolliertes Design fester Lösungen mit definierten anwendungsspezifischen Eigenschaften ermögli-chen. Temperaturabhängige 1H-Festkörper-MAS-NMR (Magic Angle Spinning Nuclear Magnetic Resonance) Experimente an festen Lösungen mit unterschiedlichen Copolymer-Zusammensetzungen weisen die Existenz dynamischer chemischer Gleichgewichte in den komplexen Wasserstoffbrücken-netzwerken nach. Veränderungen in der chemischen Verschiebung und in der Linienform der Reso-nanzlinien acider Protonen erlauben einen tiefen Einblick in die Architektur dieser Netzwerke und legen die Bindungsverhältnisse unter Berücksichtigung der Polymerchemie und der Mobilität der Systemkomponenten dar, wobei die Befunde mithilfe quantenchemischer Rechnungen untermauert werden können. Die Gegenwart acider Protonen ermöglicht einen einfachen 1H-2H-Austausch, wor-aufhin mithilfe rotorsynchronisierter temperaturabhängiger 2H-MAS-NMR Experimente die Wasser-stoffbrückenbindungsstärke bestimmt werden kann. Mit 1H-1H-Korrelationsexperimenten (Doppelquantenspektroskopie) stehen Methoden für die Bestimmung homonuklearer dipolarer 1H-1H-Kopplungen zur Verfügung, die strukturelle Aussagen aufgrund von bevorzugten räumlichen Kontak-ten bestimmter Molekülgruppen ermöglichen. Weiterhin können diese Experimente verwendet werden, um Wasserstoffbrücken zwischen Polymergruppen von Polymer-Wirkstoff-Wasserstoffbrücken zu unterscheiden, wodurch eine quantitative Beschreibung des Bindungsnetzwerks und der Konkurrenz-prozesse zwischen den einzelnen wasserstoffverbrückten Spezies ermöglicht wird. Eine Kristallisation der Wirkstoffmoleküle ist in vielen Anwendungen unerwünscht, da sie die biologische Verfügbarkeit des Wirkstoffs reduzieren. Mit 1H-Festkörper-MAS-NMR Experimenten können kristalline von amorph dispergierten Wirkstoffmolekülen unterschieden werden, wodurch eine Quantifizierung der Destabilisierungsprozesse ermöglicht wird, die durch Exposition der festen Lösungen mit Wasserdampf ausgelöst werden können. Die Zeit- und Konzentrationsabhängigkeit der Wasseraufnahme kann mit NMR-Experimenten verfolgt werden, wobei unterschiedlich mobile Was-serspezies an unterschiedlichen Bindungsorten identifiziert werden können, was zum molekularen Verständnis der Destabilisierungsprozesse beiträgt. Zusätzlich wird die Mobilität der Wirkstoffmole-küle bestimmt, die sich – wie auch die Wirkstoffkonzentration - als wichtige Größe in der Beschrei-bung der Destabilisierung erweist. Aufbauend auf den Beobachtungen wird ein Zusammenhang zwischen der Copolymerzusammensetzung und einer kritischen Wirkstoffkonzentration hergestellt, der für die Anwendungen amorpher fester Lösungen in biologischen Systemen von großer Bedeutung ist.
Resumo:
In this thesis, we investigate mixtures of quantum degenerate Bose and Fermi gases of neutral atoms in threedimensional optical lattices. Feshbach resonances allow to control interspecies interactions in these systems precisely, by preparing suitable combinations of internal atomic states and applying external magnetic fields. This way, the system behaviour can be tuned continuously from mutual transparency to strongly interacting correlated phases, up to the stability boundary.rnThe starting point for these investigations is the spin-polarized fermionic band insulator. The properties of this non-interacting system are fully determined by the Pauli exclusion principle for the occupation of states in the lattice. A striking demonstration of the latter can be found in the antibunching of the density-density correlation of atoms released from the lattice. If bosonic atoms are added to this system, isolated heteronuclear molecules can be formed on the lattice sites via radio-frequency stimulation. The efficiency of this process hints at a modification of the atom number distribution over the lattice caused by interspecies interaction.rnIn the following, we investigate systems with tunable interspecies interaction. To this end, a method is developed which allows to assess the various contributions to the system Hamiltonian both qualitatively and quantitatively by following the quantum phase diffusion of the bosonic matter wave.rnBesides a modification of occupation number statistics, these measurements show a significant renormalization of the bosonic Hubbard parameters. The final part of the thesis considers the implications of this renormalization effect on the many particle physics in the mixture. Here, we demonstrate how the quantum phase transition from a bosonic superfluid to a Mott insulator state is shifted towards considerably shallower lattices due to renormalization.
Resumo:
We show how a test of macroscopic realism based on Leggett-Garg inequalities (LGIs) can be performed in a macroscopic system. Using a continuous-variable approach, we consider quantum nondemolition (QND) measurements applied to atomic ensembles undergoing magnetically driven coherent oscillation. We identify measurement schemes requiring only Gaussian states as inputs and giving a significant LGI violation with realistic experimental parameters and imperfections. The predicted violation is shown to be due to true quantum effects rather than to a classical invasivity of the measurement. Using QND measurements to tighten the “clumsiness loophole” forces the stubborn macrorealist to recreate quantum backaction in his or her account of measurement.
Resumo:
The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum dots in the absence of an external magnetic field. The use of a far detuned single driving laser allows to obtain a Raman photon line which exhibits subnatural linewidth, and whose center can be tuned by changing the detuning and/or the Rabi frequency of the driving field. The Raman photons are produced along the undriven transition and they arise from the weak interaction of the trion states with the nuclear spins. The operating point for the gate voltage of the heterostructure can also be used to modify the linewidth and the peak value of the fluorescent signal.
Resumo:
In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle).
Resumo:
High-quality software, delivered on time and budget, constitutes a critical part of most products and services in modern society. Our government has invested billions of dollars to develop software assets, often to redevelop the same capability many times. Recognizing the waste involved in redeveloping these assets, in 1992 the Department of Defense issued the Software Reuse Initiative. The vision of the Software Reuse Initiative was "To drive the DoD software community from its current "re-invent the software" cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.'' Twenty years after issuing this initiative, there is evidence of this vision beginning to be realized in nonembedded systems. However, virtually every large embedded system undertaken has incurred large cost and schedule overruns. Investigations into the root cause of these overruns implicates reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded systems and worse outcomes in embedded systems? This question is the foundation for this research. The experiences of the Aerospace industry have led to a number of questions about reuse and how the industry is employing reuse in embedded systems. For example, does reuse in embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes positive? If the outcomes are different, it may indicate that embedded systems should not use data from nonembedded systems for estimation. Are embedded systems using the same development approaches as nonembedded systems? Does the development approach make a difference? If embedded systems develop software differently from nonembedded systems, it may mean that the same processes do not apply to both types of systems. What about the reuse of different artifacts? Perhaps there are certain artifacts that, when reused, contribute more or are more difficult to use in embedded systems. Finally, what are the success factors and obstacles to reuse? Are they the same in embedded systems as in nonembedded systems? The research in this dissertation is comprised of a series of empirical studies using professionals in the aerospace and defense industry as its subjects. The main focus has been to investigate the reuse practices of embedded systems professionals and nonembedded systems professionals and compare the methods and artifacts used against the outcomes. The research has followed a combined qualitative and quantitative design approach. The qualitative data were collected by surveying software and systems engineers, interviewing senior developers, and reading numerous documents and other studies. Quantitative data were derived from converting survey and interview respondents' answers into coding that could be counted and measured. From the search of existing empirical literature, we learned that reuse in embedded systems are in fact significantly different from nonembedded systems, particularly in effort in model based development approach and quality where the development approach was not specified. The questionnaire showed differences in the development approach used in embedded projects from nonembedded projects, in particular, embedded systems were significantly more likely to use a heritage/legacy development approach. There was also a difference in the artifacts used, with embedded systems more likely to reuse hardware, test products, and test clusters. Nearly all the projects reported using code, but the questionnaire showed that the reuse of code brought mixed results. One of the differences expressed by the respondents to the questionnaire was the difficulty in reuse of code for embedded systems when the platform changed. The semistructured interviews were performed to tell us why the phenomena in the review of literature and the questionnaire were observed. We asked respected industry professionals, such as senior fellows, fellows and distinguished members of technical staff, about their experiences with reuse. We learned that many embedded systems used heritage/legacy development approaches because their systems had been around for many years, before models and modeling tools became available. We learned that reuse of code is beneficial primarily when the code does not require modification, but, especially in embedded systems, once it has to be changed, reuse of code yields few benefits. Finally, while platform independence is a goal for many in nonembedded systems, it is certainly not a goal for the embedded systems professionals and in many cases it is a detriment. However, both embedded and nonembedded systems professionals endorsed the idea of platform standardization. Finally, we conclude that while reuse in embedded systems and nonembedded systems is different today, they are converging. As heritage embedded systems are phased out, models become more robust and platforms are standardized, reuse in embedded systems will become more like nonembedded systems.
Resumo:
The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.
Resumo:
We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.
Resumo:
When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.
Resumo:
The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.
Resumo:
Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.