947 resultados para M-Solid Subvarieties of Semigroups


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The management of municipal solid waste has become an acute problem due to enhanced economic activities and rapid urbanisation. Increased attention has been given by the government in recent years to handle this problem in a safe and hygienic manner. In this regard, Municipal Solid Waste Management (MSWM) environmental audit has been carried out for Bangalore city through the collection of secondary data from government agencies, and interviews with stakeholders and field surveys. Field surveys were carried out in seven wards (representative samples of the city) to understand the practice and identify the lacunae. The MSWM audit that was carried out functional-element-wise in selected wards to understand the efficacy and shortfalls, if any, is discussed in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The approach taken in this paper in order to modify the scattering features of electrons and phonons and improve the figure of merit (ZT) of thermoelectric PbTe is to alter the microstructure at constant chemistry. A lamellar pattern of PbTe/GeTe at the nano- and microscale was produced in Pb(0.36)Ge(0.64)Te alloy by the diffusional decomposition of a supersaturated solid solution. The mechanism of nanostructuration is most likely a discontinuous spinodal decomposition. A simple model relating the interface velocity to the observed lamellar spacing is proposed. The effects of nanostructuration in Pb(0.36)Ge(0.64)Te alloy on the electrical and thermal conductivity, thermopower and ZT were investigated. It was shown that nanostructuration through the formation of a lamellar pattern of PbTe/GeTe is unlikely to provide a significant improvement due to the occurrence of discontinuous coarsening. However, the present study allows an analysis of possible strategies to improve thermoelectric materials via optimal design of the microstructure and optimized heat treatment. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin foils of copper, silver and gold were equilibrated with tetragonal GeO2 under controlled View the MathML source gas streams at 1000 K. The equilibrium concentration of germanium in the foils was determined by the X-ray fluorescence technique. The standard free energy of formation of tetragonal GeO2 was measured by a solid oxide galvanic cell. The chemical potential of germanium calculated from the experimental data and the free energies of formation of carbon monoxide and carbon dioxide was found to decrease in the sequence Ag + Ge > Au + Ge > Cu + Ge. The more negative value for the chemical potential of germanium in solid copper, compared to that in solid gold, cannot be explained in terms of the strain energy factor, electro-negativity differences or the vaporization energies of the solvent, and suggests that the d band and its hybridization with s electrons are an important factor in determining the absolute values for the chemical potential in dilute solutions. However, the variation of the chemical potential with solute concentration can be correlated to the concentration of s and p electrons in the outer shell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theory, design, and performance of a solid electrolyte twin thermocell for the direct determination of the partial molar entropy of oxygen in a single-phase or multiphase mixture are described. The difference between the Seebeck coefficients of the concentric thermocells is directly related to the difference in the partial molar entropy of oxygen in the electrodes of each thermocell. The measured potentials are sensitive to small deviations from equilibrium at the electrodes. Small electric disturbances caused by simultaneous potential measurements or oxygen fluxes caused by large oxygen potential gradients between the electrodes also disturb the thermoelectric potential. An accuracy of ±0.5 calth K−1 mol−1 has been obtained by this method for the entropies of formation of NiO and NiAl2O4. This “entropy meter” may be used for the measurement of the entropies of formation of simple or complex oxides with significant residual contributions which cannot be detected by heat-capacity measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of Cr20~ in Cr20~-A12Oa solid solution has been determined in the temperature range 800~176 from electromotive force measurements on the solid oxide galvanic cell Pt,Cr + Cr2OJY~O~-ThO2/Cr + Cr~A12-xO~,Pt The activities of Cr203 and A120~ in the solid solution show both positive and negative deviations from Raoult's law. The heat and entropy of mixing of the solid Solution obtained from the temperature dependence of the emf can be expressed as AH = XCr203XA1203 [31,700Xcrzo3 -}- 37,470XA1203] J mole -I hS = -- 1.8R [Xcr2o3 In Xcr2o3 + XA12o3 In XAaos]The entropy of mixing is 10% lower than that predicted by the Temkin model.The large positive heat of mixing in the Cr2Os-A12Oa solid solution, however, suggests that this apparent: entropy discrepancy originates with the clustering of positive ions on the cation sublattice. The asymmetric miscibility gap exhibited in the CrzOa-A12Oa system below 900~ is consistent with the thermodynamic data trends recorded at the more elevated temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activities of CaO and Al2O3 in lime-alumina melts were studied by Knudsen cell-mass spectrometry at 2060 K. Emf of solid state cells, with CaF2 as the electrolyte, was measured from 923 to 1223 K to obtain the free energies of formation of the interoxide compounds. The results are critically evaluated in the light of data reported in the literature on phase equilibria, activities in melts, and stabilities of compounds. A coherent set of data is presented, including the previously unknown free energy of formation of CaO.6Al2O3 and the temperature dependence of activities in the liquid phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Gibbs energy of mixing for the system Fe3O4-FeAl2O4 was determined at 1573 K using a gas-metal-oxide equilibration technique. Oxide solid solution samples were equilibrated with Pt foils under controlled CO+CO2 gas streams. The equilibrium iron concentration in the foil was determined by chemical analysis. The cation distribution between tetrahedral and octahedral sites in the spinel crystal can be calculated from site-preference energies and used as an alternate method of determining some thermodynamic properties, including the Gibbs energy of mixing. The solvus occurring at low temperatures in the system Fe3C4-FeAl2C4 was used to derive the effect of lattice distortion due to cation size difference on the enthalpy of mixing and to obtain a better approximation to the measured thermodynamic quantities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of Cr in solid Cr-Mo alloys has been measured at 1873 K using a metal-oxide-gas equilibrium technique. Thin foils of Mo were equilibrated with solid Cr203 under flowing gas mixtures of argon, hydrogen and watervapourof known composition. The equilibrium concentration of Cr in Mo was determined by chemical analysis. These measurements indicate positive deviations from Raoult's law. The activity data obtained in the study at 1873 K are combined with free energy of mixing at 1471 K, calorimetric enthalpy of mixing at 1673 K, and experimental evidence of phase separation at lower temperatures, reported in the literature, to obtain an optimised set of thermodynamic parameters for the Cr-Mosystem in the solid state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concepts and theoretical origins of conduction domains for solid electrolytes and electrode polarization are outlined briefly. The point electrode made of the ' solid electrolyte material is useful for deflecting the semipermeability flux away from the electrode. The emf of galvanic sensors consisting of two solid electrolytes in intimate contact with each other and in which transport occurs by a common ion is reviewed. The voltage of such cells depends on the chemical potential of the active species at the interface between the two electrolytes, which can be evaluated from the transport properties of electrolytes using a numerical procedure. The factors governing the speed of response of solid electrolyte gas sensors are analyzed. A rigorous expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for nonisothermal galvanic sensors are outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. The principles of operation of galvanic sensors for oxygen, sulphur, oxides of sulphur (SOx,x=2,3), carbon, oxides uf carbon (COx,x= 1,2), oxides of nitrogen (NOx,x= 1,2) and silicon are discussed. The use of auxiliary electrodes in galvanic sensors to expand the detection capability of known solid electrolytes to a large number of species is explained with reference to sensors for sulphur and oxides of sulphur (SOx,x=2,3).Finally the cause of the common errors in galvanic measurements and test for the correct functioning of galvanic sensors is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Gibbs' energy offormation of the intermetallic compound URh3has been measured in the temperature range 980 to 1320 K using an oxide solid state cell incorporating yttria-doped thoria as the solid electrolyte and a mixture of manganese and manganese oxide as the reference electrode. The cell can be represented as Pt, Mn + MnO I (Y203)Th02 I Rh + URh3 + U02 + x' Rh, Pt The reversible emf of the cell was a linear function of temperature E = 15.60 +0.0237 T (±0.8) mY. Using auxiliary thermodynamic data for MnO and U02+ x the Gibbs' energy of formation of URh3 from component metals has been computed. The results can be expressed by the equation L'.G?< URh3 > = -316240 + 13.22 T (± 3000) J mol-1. The "third-law" enthalpy of formation of URh3at 298 K is -293.2 (± 4) kJ mol-1, significantly more negative than the value of -181.5 kJ mol-1 calculated using Miedema's model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.