949 resultados para Low density polyethylene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was approximately 0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the atherogenic potential of certain plasma constituents, including low-density lipoprotein (LDL). Glycation of LDL is significantly increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls; enhanced uptake of LDL by macrophages, thus stimulating foam cell formation; increased platelet aggregation; formation of LDL-immune complexes; and generation of oxygen free radicals, resulting in oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterized by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation," occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long-lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age: in diabetes, their rate of accumulation is accelerated. Inhibition of glycation, oxidation, and glycoxidation may form the basis of future antiatherogenic strategies in both diabetic and nondiabetic individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modifications of extant plasma proteins, structural proteins,and other macromolecules are enhanced in diabetes because of increased glycation (secondary to increased glucose concentrations) and perhaps because of increased oxidative stress, Increased glycation is present from the time of onset of diabetes, but the relation between diabetes and oxidative stress is less clear: increased oxidative stress may occur later in the course of disease, as vascular damage becomes established, or it may be a feature of uncomplicated diabetes, The combined effects of protein modification by glycation and oxidation may contribute to the development of accelerated atherosclerosis in diabetes and to the development of microvascular complications, Thus, even if not increased by diabetes, variations in oxidative stress may modulate the consequences of hyperglycemia in individual diabetic patients, In this review, the close interaction between glycation and oxidative processes is discussed, and the theme is developed that the most significant modifications of proteins are the result of interactions with reactive carbonyl groups, While glucose itself contains a carbonyl group that is involved in the initial glycation reaction, the most important and reactive carbonyls are formed by free radical-oxidation reactions damaging either carbohydrates (including glucose itself) or lipids, The resulting carbonyl-containing intermediate products then modify proteins, yielding "glycoxidation" and "lipoxidation" products, respectively, This common pathway for glucose and lipid-mediated stress, which may contribute to diabetic complications, is the basis for the carbonyl stress hypothesis for the development of diabetic complications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: A relationship may exist between body iron stores, endothelial dysfunction and overall cardiovascular risk.

Aims: To compare vascular compliance, biochemical endothelial function and antioxidant status between patients with homozygous hereditary haemochromatosis and healthy controls.

Methods: Haemochromatosis patients and healthy controls were recruited. Measures of vascular compliance were assessed by applanation tonometry. Serological markers of endothelial function (plasma lipid hydroperoxides, cell adhesion molecules), antioxidant levels (ascorbate, lipid soluble antioxidants) and high-sensitivity C-reactive protein (CRP) were also measured.

Results: Thirty-five hereditary haemochromatosis patients (ten females, mean age 54.6) and 36 controls (27 female, mean age 54.0) were recruited. Haemochromatosis patients had significantly higher systolic and diastolic blood pressures. Pulse wave velocity (PWV) was significantly higher in male haemochromatosis patients (9.90 vs. 8.65 m/s, p = 0.048). Following adjustment for age and blood pressure, male haemochromatosis patients continued to have a trend for higher PWVs (+1.37 m/s, p = 0.058). Haemochromatosis patients had significantly lower levels of ascorbate (46.11 vs. 72.68 lmol/L, p = 0.011), retinol (1.17 vs. 1.81 lmol/L, p = 0.001) and g-tocopherol (2.51 vs. 3.14 lmol/L, p = 0.011). However, there was no difference in lipid hydroperoxides (0.46 vs. 0.47 nmol/L, p = 0.94), cell adhesion molecule levels (ICAM: 348.12 vs. 308.03 ng/mL, p = 0.32 and VCAM: 472.78 vs. 461.31 ng/mL, p = 0.79) or high-sensitivity CRP (225.01 vs. 207.13 mg/L, p = 0.32).

Conclusions: Haemochromatosis is associated with higher PWVs in males and diminished antioxidants across the sexes but no evidence of endothelial dysfunction or increased lipid peroxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The worldwide epidemic of obesity is a major public health concern and is persuasively linked to the rising prevalence of diabetes and cardiovascular disease. Obesity is often associated with an abnormal lipoprotein profile, which may be partly negated by pioglitazone intervention, as this can influence the composition and oxidation characteristics of low-density lipoprotein (LDL). However, as pioglitazone's impact on these parameters within high-density lipoprotein (HDL), specifically HDL(2&3), is absent from the literature, this study was performed to address this shortcoming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background—Abdominal aortic aneurysm (AAA) is a common cardiovascular disease among older people and demonstrates significant heritability. In contrast to similar complex diseases, relatively few genetic associations with AAA have been confirmed. We reanalysed our genome-wide study and carried through to replication suggestive discovery associations at a lower level of significance.

Methods and Results—A genome-wide association study was conducted using 1,830 cases from the UK, New Zealand and Australia with infra-renal aorta diameter =30mm or ruptured AAA and 5,435 unscreened controls from the 1958 Birth Cohort and National Blood Service cohort from the Wellcome Trust Case Control Consortium. Eight suggestive associations with P<1x10-4 were carried through to in silico replication in 1,292 AAA cases and 30,503 controls. One SNP associated with P<0.05 after Bonferroni correction in the in silico study underwent further replication (706 AAA cases and 1,063 controls from the UK, 507 AAA cases and 199 controls from Denmark and 885 AAA cases and 1,000 controls from New Zealand). Low density lipoprotein receptor (LDLR) rs6511720 A, was significantly associated overall and in three of five individual replication studies. The full study showed an association that reached genome-wide significance (odds ratio 0.76; 95% confidence interval 0.70 to 0.83; P=2.08x10-10).

Conclusions—LDLR rs6511720 is associated with abdominal aortic aneurysm. This finding is consistent with established effects of this variant on coronary artery disease. Shared aetiological pathways with other cardiovascular diseases may present novel opportunities for preventative and therapeutic strategies for AAA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eight Duroc × (Landrace × Large White) male pigs housed at a stocking rate of 0.50 m2/pig were subjected to a higher stocking rate of 0.25 m2/pig (higher density, HD) for two 4-day periods over 26 days. Using biochemical and proteomic techniques serum and plasma samples were examined to identify potential biomarkers for monitoring stress due to HD housing. HD housed pigs showed significant differences (P < 0.001) in total cholesterol and low density lipoprotein-associated cholesterol, as well as in concentrations of the pig-major acute phase protein (Pig-MAP) (P = 0.002). No differences were observed in serum cortisol or other acute phase proteins such as haptoglobin, C-reactive protein or apolipoprotein A–I. HD-individuals also showed an imbalance in redox homeostasis, detected as an increase in the level of oxidized proteins measured as the total plasma carbonyl protein content (P < 0.001) with a compensatory increase in the activity of the antioxidant enzyme glutathione peroxidase (P = 0.012). Comparison of the serum proteome yielded a new potential stress biomarker, identified as actin by mass spectrometry. Cluster analysis of the results indicated that individuals segregated into two groups, with different response patterns, suggesting that the stress response depended on individual susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature at which densification ends for a range of blends comprising a metallocene catalysed medium density polyethylene (PE) in two different physical forms (powder and micropellets) were investigated using a novel data acquisition system (TP Picture®), developed by Total Petrochemicals [1]. The various blends were subsequently rotomoulded and test specimens prepared for mechanical analysis to establish the relationship between densification rate and bubble size / distribution on the part properties. The micropellets exhibited more rapid bubble removal times than powder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high-density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle-length, randomly oriented bristles (MRB), or non-oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non-fibrous composite. It was concluded that the in-situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. Copyright © 2011 Society of Plastics Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3x faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.