906 resultados para Lot-sizing and scheduling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under high loads, a Web server may be servicing many hundreds of connections concurrently. In traditional Web servers, the question of the order in which concurrent connections are serviced has been left to the operating system. In this paper we ask whether servers might provide better service by using non-traditional service ordering. In particular, for the case when a Web server is serving static files, we examine the costs and benefits of a policy that gives preferential service to short connections. We start by assessing the scheduling behavior of a commonly used server (Apache running on Linux) with respect to connection size and show that it does not appear to provide preferential service to short connections. We then examine the potential performance improvements of a policy that does favor short connections (shortest-connection-first). We show that mean response time can be improved by factors of four or five under shortest-connection-first, as compared to an (Apache-like) size-independent policy. Finally we assess the costs of shortest-connection-first scheduling in terms of unfairness (i.e., the degree to which long connections suffer). We show that under shortest-connection-first scheduling, long connections pay very little penalty. This surprising result can be understood as a consequence of heavy-tailed Web server workloads, in which most connections are small, but most server load is due to the few large connections. We support this explanation using analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation applies a variety of quantitative methods to electricity and carbon market data, utility company accounts data, capital and operating costs to analyse some of the challenges associated with investment in energy assets. In particular, three distinct research topics are analysed within this general theme: the efficiency of interconnector trading, the optimal sizing of intermittent wind facilities and the impact of carbon pricing on the cost of capital for investors are researched in successive sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Folliculogenesis is a complex process regulated by various paracrine and autocrine factors. In vitro growth systems of primordial and preantral follicles have been developed for future use of immature oocytes, as sources of fertilizable oocytes and for studying follicular growth and oocyte maturation mechanisms. Rodents were often chosen for in vitro follicular culture research and a lot of factors implicated in folliculogenesis have been identified using this model. To date, the mouse is the only species in which the whole process of follicular growth, oocyte maturation, fertilization and embryo transfer into recipient females was successfully performed. However, the efficiency of in vitro culture systems must still be considerably improved. Within the follicle, numerous events affect cell proliferation and the acquisition of oocyte developmental competency in vitro, including interactions between the follicular cells and the oocyte, and the composition of the culture medium. Effects of the acting factors depend on the stage of follicle development, the culture system used and the species. This paper reviews the action of endocrine, paracrine factors and other components of culture medium on in vitro growth of preantral follicles in rodents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The Veterans Health Administration has developed My HealtheVet (MHV), a Web-based portal that links veterans to their care in the veteran affairs (VA) system. The objective of this study was to measure diabetic veterans' access to and use of the Internet, and their interest in using MHV to help manage their diabetes. MATERIALS AND METHODS: Cross-sectional mailed survey of 201 patients with type 2 diabetes and hemoglobin A(1c) > 8.0% receiving primary care at any of five primary care clinic sites affiliated with a VA tertiary care facility. Main measures included Internet usage, access, and attitudes; computer skills; interest in using the Internet; awareness of and attitudes toward MHV; demographics; and socioeconomic status. RESULTS: A majority of respondents reported having access to the Internet at home. Nearly half of all respondents had searched online for information about diabetes, including some who did not have home Internet access. More than a third obtained "some" or "a lot" of their health-related information online. Forty-one percent reported being "very interested" in using MHV to help track their home blood glucose readings, a third of whom did not have home Internet access. Factors associated with being "very interested" were as follows: having access to the Internet at home (p < 0.001), "a lot/some" trust in the Internet as a source of health information (p = 0.002), lower age (p = 0.03), and some college (p = 0.04). Neither race (p = 0.44) nor income (p = 0.25) was significantly associated with interest in MHV. CONCLUSIONS: This study found that a diverse sample of older VA patients with sub-optimally controlled diabetes had a level of familiarity with and access to the Internet comparable to an age-matched national sample. In addition, there was a high degree of interest in using the Internet to help manage their diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Recent studies suggest that there is a learning curve for metal-on-metal hip resurfacing. The purpose of this study was to assess whether implant positioning changed with surgeon experience and whether positioning and component sizing were associated with implant longevity. METHODS: We evaluated the first 361 consecutive hip resurfacings performed by a single surgeon, which had a mean follow-up of 59 months (range, 28 to 87 months). Pre and post-operative radiographs were assessed to determine the inclination of the acetabular component, as well as the sagittal and coronal femoral stem-neck angles. Changes in the precision of component placement were determined by assessing changes in the standard deviation of each measurement using variance ratio and linear regression analysis. Additionally, the cup and stem-shaft angles as well as component sizes were compared between the 31 hips that failed over the follow-up period and the surviving components to assess for any differences that might have been associated with an increased risk for failure. RESULTS: Surgeon experience was correlated with improved precision of the antero-posterior and lateral positioning of the femoral component. However, femoral and acetabular radiographic implant positioning angles were not different between the surviving hips and failures. The failures had smaller mean femoral component diameters as compared to the non-failure group (44 versus 47 millimeters). CONCLUSIONS: These results suggest that there may be differences in implant positioning in early versus late learning curve procedures, but that in the absence of recognized risk factors such as intra-operative notching of the femoral neck and cup inclination in excess of 50 degrees, component positioning does not appear to be associated with failure. Nevertheless, surgeons should exercise caution in operating patients with small femoral necks, especially when they are early in the learning curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scheduling a set of jobs over a collection of machines to optimize a certain quality-of-service measure is one of the most important research topics in both computer science theory and practice. In this thesis, we design algorithms that optimize {\em flow-time} (or delay) of jobs for scheduling problems that arise in a wide range of applications. We consider the classical model of unrelated machine scheduling and resolve several long standing open problems; we introduce new models that capture the novel algorithmic challenges in scheduling jobs in data centers or large clusters; we study the effect of selfish behavior in distributed and decentralized environments; we design algorithms that strive to balance the energy consumption and performance.

The technically interesting aspect of our work is the surprising connections we establish between approximation and online algorithms, economics, game theory, and queuing theory. It is the interplay of ideas from these different areas that lies at the heart of most of the algorithms presented in this thesis.

The main contributions of the thesis can be placed in one of the following categories.

1. Classical Unrelated Machine Scheduling: We give the first polygorithmic approximation algorithms for minimizing the average flow-time and minimizing the maximum flow-time in the offline setting. In the online and non-clairvoyant setting, we design the first non-clairvoyant algorithm for minimizing the weighted flow-time in the resource augmentation model. Our work introduces iterated rounding technique for the offline flow-time optimization, and gives the first framework to analyze non-clairvoyant algorithms for unrelated machines.

2. Polytope Scheduling Problem: To capture the multidimensional nature of the scheduling problems that arise in practice, we introduce Polytope Scheduling Problem (\psp). The \psp problem generalizes almost all classical scheduling models, and also captures hitherto unstudied scheduling problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional resource allocation. We design several competitive algorithms for the \psp problem and its variants for the objectives of minimizing the flow-time and completion time. Our work establishes many interesting connections between scheduling and market equilibrium concepts, fairness and non-clairvoyant scheduling, and queuing theoretic notion of stability and resource augmentation analysis.

3. Energy Efficient Scheduling: We give the first non-clairvoyant algorithm for minimizing the total flow-time + energy in the online and resource augmentation model for the most general setting of unrelated machines.

4. Selfish Scheduling: We study the effect of selfish behavior in scheduling and routing problems. We define a fairness index for scheduling policies called {\em bounded stretch}, and show that for the objective of minimizing the average (weighted) completion time, policies with small stretch lead to equilibrium outcomes with small price of anarchy. Our work gives the first linear/ convex programming duality based framework to bound the price of anarchy for general equilibrium concepts such as coarse correlated equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of sequencing n jobs in a three-machine flow shop with the objective of minimizing the makespan, which is the completion time of the last job. An O(n log n) time heuristic that is based on Johnson's algorithm is presented. It is shown to generate a schedule with length at most 5/3 times that of an optimal schedule, thereby reducing the previous best available worst-case performance ratio of 2. An application to the general flow shop is also discussed.