967 resultados para Logical Framework
Resumo:
The authors of the article explore and discuss the effects of implementing the EC Water Framework Directive (WFD) in the Republic of Ireland. They also summarise some of the findings from a survey of 31 lakes sampled regularly between March 1996 and December 1997. The lakes were sampled regularly for a range of physico-chemical and biotic variables that probably would be important for monitoring programmes implemented under the WFD. The authors discuss problems of monitoring lake types with varying seasonal patterns.
Resumo:
The Water Framework Directive (WFD; European Commission 2000) is a framework for European environmental legislation that aims at improving water quality by using an integrated approach to implement the necessary societal and technical measures. Assessments to guide, support, monitor and evaluate policies, such as the WFD, require scientific approaches which integrate biophysical and human aspects of ecological systems and their interactions, as outlined by the International Council for Science (2002). These assessments need to be based on sound scientific principles and address the environmental problems in a holistic way. End-users need help to select the most appropriate methods and models. Advice on the selection and use of a wide range of water quality models has been developed within the project Benchmark Models for the Water Framework Directive (BMW). In this article, the authors summarise the role of benchmarking in the modelling process and explain how such an archive of validated models can be used to support the implementation of the WFD.
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.
Variance compensation within the MLLR framework for robust speech recognition and speaker adaptation
Resumo:
FRAME3D, a program for the nonlinear seismic analysis of steel structures, has previously been used to study the collapse mechanisms of steel buildings up to 20 stories tall. The present thesis is inspired by the need to conduct similar analysis for much taller structures. It improves FRAME3D in two primary ways.
First, FRAME3D is revised to address specific nonlinear situations involving large displacement/rotation increments, the backup-subdivide algorithm, element failure, and extremely narrow joint hysteresis. The revisions result in superior convergence capabilities when modeling earthquake-induced collapse. The material model of a steel fiber is also modified to allow for post-rupture compressive strength.
Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is optimized and then parallelized. A distributed-memory divide-and-conquer approach is used for both the global direct solver and element-state updates. The result is an implicit finite-element hybrid-parallel program that takes advantage of the narrow-band nature of very tall buildings and uses nearest-neighbor-only communication patterns.
Using three structures of varied sized, PFRAME3D is shown to compute reproducible results that agree with that of the optimized 1-core version (displacement time-history response root-mean-squared errors are ~〖10〗^(-5) m) with much less wall time (e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The maximum speedups attained are shown to increase with building height (as the total number of cores used also increases), and the parallel framework can be expected to be suitable for buildings taller than the ones presented here.
PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube building (fundamental period of 6.16 sec) designed according to the 1994 Uniform Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story shear-band collapse mechanisms are observed around mid-height of the building. The use of closely-spaced columns and deep beams is found to contribute to the building's “somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed to be sensitive to whether a model is fracture-capable.
Resumo:
A especificação dos requisitos de software pressupõe que se conheçam os requisitos do sistema do que será parte. Os requisitos do sistema, por sua vez, pressupõem o conhecimento do negócio (business) onde o sistema será utilizado. Para que estes conhecimentos sejam obtidos é importante o envolvimento dos stakeholders tanto no nível de sistema quanto no nível de negócio. As literaturas sobre Engenharia de Requisitos, Engenharia de Software e Engenharia de Sistemas concordam que o envolvimento dos stakeholders é fundamental. O tratamento dispensado ao assunto, no entanto, é pequeno, dada a importância do tema. Esta dissertação, utilizando conceitos da Engenharia de Métodos Situacionais e de Design Science, apresenta o ZEP Framework, um artefato, produzido com o software EPF Composer, que permite a criação de métodos para envolver o stakeholder. Estes métodos, para serem criados, devem levar em consideração as peculiaridades da organização, dos recursos disponíveis e do projeto em si. São apresentados, ainda, alguns cenários, na área de Turismo, como exemplos da utilização do framework.