954 resultados para Liver.
Resumo:
BACKGROUND: Reversible ischaemia/reperfusion (I/R) liver injury has been used to induce engraftment and hepatic parenchymal differentiation of exogenous beta2-microglubulin(-)/Thy1(+) bone marrow derived cells. AIM: To test the ability of this method of hepatic parenchymal repopulation, theoretically applicable to clinical practice, to correct the metabolic disorder in a rat model of congenital hyperbilirubinaemia. METHODS AND RESULTS: Analysis by confocal laser microscopy of fluorescence labelled cells and by immunohistochemistry for beta2-microglubulin, 72 hours after intraportal delivery, showed engraftment of infused cells in liver parenchyma of rats with I/R, but not in control animals with non-injured liver. Transplantation of bone marrow derived cells obtained from GFP-transgenic rats into Lewis rats resulted in the presence of up to 20% of GFP positive hepatocytes in I/R liver lobes after one month. The repopulation rate was proportional to the number of transplanted cells. Infusion of GFP negative bone marrow derived cells into GFP positive transgenic rats resulted in the appearance of GFP negative hepatocytes, suggesting that the main mechanism underlying parenchymal repopulation was differentiation rather than cell fusion. Transplantation of wild type bone marrow derived cells into hyperbilirubinaemic Gunn rats with deficient bilirubin conjugation after I/R damage resulted in 30% decrease in serum bilirubin, the appearance of bilirubin conjugates in bile, and the expression of normal UDP-glucuronyltransferase enzyme evaluated by polymerase chain reaction. CONCLUSIONS: I/R injury induced hepatic parenchymal engraftment and differentiation into hepatocyte-like cells of bone marrow derived cells. Transplantation of bone marrow derived cells from non-affected animals resulted in the partial correction of hyperbilirubinaemia in the Gunn rat.
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.
Resumo:
PURPOSE: To prospectively evaluate, for the depiction of simulated hypervascular liver lesions in a phantom, the effect of a low tube voltage, high tube current computed tomographic (CT) technique on image noise, contrast-to-noise ratio (CNR), lesion conspicuity, and radiation dose. MATERIALS AND METHODS: A custom liver phantom containing 16 cylindric cavities (four cavities each of 3, 5, 8, and 15 mm in diameter) filled with various iodinated solutions to simulate hypervascular liver lesions was scanned with a 64-section multi-detector row CT scanner at 140, 120, 100, and 80 kVp, with corresponding tube current-time product settings at 225, 275, 420, and 675 mAs, respectively. The CNRs for six simulated lesions filled with different iodinated solutions were calculated. A figure of merit (FOM) for each lesion was computed as the ratio of CNR2 to effective dose (ED). Three radiologists independently graded the conspicuity of 16 simulated lesions. An anthropomorphic phantom was scanned to evaluate the ED. Statistical analysis included one-way analysis of variance. RESULTS: Image noise increased by 45% with the 80-kVp protocol compared with the 140-kVp protocol (P < .001). However, the lowest ED and the highest CNR were achieved with the 80-kVp protocol. The FOM results indicated that at a constant ED, a reduction of tube voltage from 140 to 120, 100, and 80 kVp increased the CNR by factors of at least 1.6, 2.4, and 3.6, respectively (P < .001). At a constant CNR, corresponding reductions in ED were by a factor of 2.5, 5.5, and 12.7, respectively (P < .001). The highest lesion conspicuity was achieved with the 80-kVp protocol. CONCLUSION: The CNR of simulated hypervascular liver lesions can be substantially increased and the radiation dose reduced by using an 80-kVp, high tube current CT technique.
Resumo:
BACKGROUND: Our aim was to investigate the influence of age and gender on intrarenal resistance index (RI) measurements in 78 healthy subjects (46 males, 32 females; group 1) and 35 subjects (group 2) with fatty liver disease (28 males and 7 females). SUBJECTS AND METHODS: First, each subject underwent a conventional abdominal ultrasound examination. Then, intrarenal RI values were determined from three distinct interlobar and cortical arteries respectively on both kidneys. The correlation of intrarenal RI with age and gender as a variable was statistically evaluated by linear regression. RESULTS: In group 1, the variables gender, kidney region and comparison of right versus left kidney had no significant effect on intrarenal RI (p>0.05). The variable age, on the other hand, showed a significant positive correlation on all four defined measuring points (p<0.01) with linear correlation coefficients of r = 0.26 (left kidney, central) to r = 0.37 (right kidney, cortical). Therefore normal RI values at ages 25, 45, 65 years could be defined as 0.59, 0.61 and 0.63, respectively. Age dependency can thus be expressed as a function with the formula y = 0.565 + 0.001.x. Patients with fatty liver disease showed age dependency on renal RI (p<0.01) as well. CONCLUSION: In accordance with other studies, the influence of age on intrarenal RI measurement is significant in healthy subjects. Intrarenal RI values from subjects with a fatty liver disease showed age dependency as well. Therefore it is necessary to consider the age of the examined person to interpret RI values correctly.
Resumo:
AIM: This study was conducted to delineate partnership-relation functioning over time and specifically matched to various organs such as heart, liver, and kidney. METHOD: Prospective, paralleled case-control-study including patients and their respective partners before and one year after organ transplantation in 23 heart-transplant recipients, 19 liver-transplant patients, and 16 kidney-transplant recipients. To assess partnership functioning, the FB-Z (family assessment measure) of Cierpka and Frevert was used. Statistics included descriptive methods, correlations, and analysis of variance including the items "organ" and "time". RESULTS: Heart-transplant recipients and their partners show significant better overall measures in their partnership ratings (sum-value) in comparison to liver or kidney patients and their partners. In all patient and partner groups, except in kidney-transplant recipients a significant deterioration over time is discernible in the subscales role performance and emotionality. In respect to the item "organ" significant differences were found in overall functioning and the subscale communication where heart-transplant recipients and their partners have significant better functioning compared to kidney or liver transplant patients. In kidney patients and their partners only communication changes to the better in the time course. CONCLUSION: In any organ transplantation the two sides of the coin are important to bear in mind, the one is the live-saving act of transplantation as such, the other is the important distress in the phase before but equally after the operation, mainly in the first year where patients and their respective partners have to be followed and treated even in respect to psychosocial and marital functioning.
Resumo:
Primary perivascular epithelioid cell tumor (PEComa) of the liver is a very rare example of an emerging family of hepatic PEC tumors. Only few cases have been described so far. We report the case of a large but benign hepatic PEComa in a 53-year-old man without signs of tuberous sclerosis. In contrast to recently described PEC-derived liver tumors in children and young adults, this neoplasm was not related to the hepatic ligaments but had developed deeply within the liver substance. The neoplastic cells displayed the complete phenotype typical for PEComas, i.e. reactivity for several melanoma markers and for smooth muscle actin. The unique relationship of myoid tumor cells to the adventitia of blood vessels prompted us, in comparison with published findings obtained with angiomyolipomas, to comment on the possible origin of the still enigmatic perivascular epithelioid cells.
Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease
Resumo:
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), the most common cause of liver disease in children, is associated with obesity and insulin resistance. However, the relationship between NAFLD and cardiovascular risk factors in children is not fully understood. The objective of this study was to determine the association between NAFLD and the presence of metabolic syndrome in overweight and obese children. METHODS AND RESULTS: This case-control study of 150 overweight children with biopsy-proven NAFLD and 150 overweight children without NAFLD compared rates of metabolic syndrome using Adult Treatment Panel III criteria. Cases and controls were well matched in age, sex, and severity of obesity. Children with NAFLD had significantly higher fasting glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and diastolic blood pressure than overweight and obese children without NAFLD. Subjects with NAFLD also had significantly lower high-density lipoprotein cholesterol than controls. After adjustment for age, sex, race, ethnicity, body mass index, and hyperinsulinemia, children with metabolic syndrome had 5.0 (95% confidence interval, 2.6 to 9.7) times the odds of having NAFLD as overweight and obese children without metabolic syndrome. CONCLUSIONS: NAFLD in overweight and obese children is strongly associated with multiple cardiovascular risk factors. The identification of NAFLD in a child should prompt global counseling to address nutrition, physical activity, and avoidance of smoking to prevent the development of cardiovascular disease and type 2 diabetes.
Resumo:
BACKGROUND: This study investigated the role of a negative FAST in the diagnostic and therapeutic algorithm of multiply injured patients with liver or splenic lesions. METHODS: A retrospective analysis of 226 multiply injured patients with liver or splenic lesions treated at Bern University Hospital, Switzerland. RESULTS: FAST failed to detect free fluid or organ lesions in 45 of 226 patients with spleen or liver injuries (sensitivity 80.1%). Overall specificity was 99.5%. The positive and negative predictive values were 99.4% and 83.3%. The overall likelihood ratios for a positive and negative FAST were 160.2 and 0.2. Grade III-V organ lesions were detected more frequently than grade I and II lesions. Without the additional diagnostic accuracy of a CT scan, the mean ISS of the FAST-false-negative patients would be significantly underestimated and 7 previously unsuspected intra-abdominal injuries would have been missed. CONCLUSION: FAST is an expedient tool for the primary assessment of polytraumatized patients to rule out high grade intra-abdominal injuries. However, the low overall diagnostic sensitivity of FAST may lead to underestimated injury patterns and delayed complications may occur. Hence, in hemodynamically stable patients with abdominal trauma, an early CT scan should be considered and one must be aware of the potential shortcomings of a "negative FAST".
Resumo:
Background: Difference in pulse pressure (dPP) confirms adequate intravascular filling as a prerequisite for tissue perfusion. We hypothesized that both oxygen and dobutamine increase liver tissue oxygen tension (ptO(2)). Methods: Eight anesthetized pigs received dPP-guided fluid management. Hepatic pO(2) was measured with Clark-type electrodes placed subcapsularly, and on the liver surface. Pigs received: (1) supplemental oxygen (F(i)O(2) 1.0); (2) dobutamine 2.5 mug/kg/min, and (3) dobutamine 5 mug/kg/min. Data were analyzed using repeated-measures ANOVA followed by a Tukey post-test for multiple comparisons. ptO(2 )measured subcapsularly and at the liver surface were compared using the Bland-Altman plot. Results: Variation in F(i)O(2) changed local hepatic tissue ptO(2) [subcapsular measurement: 39 +/- 12 (F(i)O(2) 0.3), 89 +/- 35 mm Hg (F(i)O(2) 1.0, p = 0.01 vs. F(i)O(2) 0.3), 44 +/- 10 mm Hg (F(i)O(2) 0.3, p = 0.05 vs. F(i)O(2) 1.0); surface measurement: 52 +/- 35 (F(i)O(2) 0.3), 112 +/- 24 mm Hg (F(i)O(2) 1.0, p = 0.001 vs. F(i)O(2) 0.3), 54 +/- 24 mm Hg (F(i)O(2) 0.3, p = 0.001 vs. F(i)O(2) 1.0)]. Surface measurements were widely scattered compared to subcapsular measurements (bias: -15 mm Hg, precision: 76.3 mm Hg). Dobutamine did not affect hepatic oxygenation. Conclusion: Supplemental oxygen increased hepatic tissue pO(2) while dobutamine did not. Although less invasive, the use of surface measurements is discouraged.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.