905 resultados para Legendre polynomials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33E12, 33C20.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMS Subj. Classification: 65D07, 65D30.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 16R50, 16R10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Георги С. Бойчев - Настоящата статия съдържа свойства на някои редове на Якоби.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petar Popivanov - This talk deals with several classical and more modern results from the theory of primes and is devoted to a larger audience. A short survey is given and almost primes of order two are discussed too. Polynomials with integer coefficients are considered from the point of view of their composite and prime functional values. Exponential type functions mapping N into the set of primes are also constructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Михаил Константинов, Весела Пашева, Петко Петков - Разгледани са някои числени проблеми при използването на компютърната система MATLAB в учебната дейност: пресмятане на тригонометрични функции, повдигане на матрица на степен, спектрален анализ на целочислени матрици от нисък ред и пресмятане на корените на алгебрични уравнения. Причините за възникналите числени трудности могат да се обяснят с особеностите на използваната двоичната аритметика с плаваща точка.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.1, G.1.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the polynomials f, g ∈ Z[x] of degrees n, m, respectively, with n > m, three new, and easy to understand methods — along with the more efficient variants of the last two of them — are presented for the computation of their subresultant polynomial remainder sequence (prs). All three methods evaluate a single determinant (subresultant) of an appropriate sub-matrix of sylvester1, Sylvester’s widely known and used matrix of 1840 of dimension (m + n) × (m + n), in order to compute the correct sign of each polynomial in the sequence and — except for the second method — to force its coefficients to become subresultants. Of interest is the fact that only the first method uses pseudo remainders. The second method uses regular remainders and performs operations in Q[x], whereas the third one triangularizes sylvester2, Sylvester’s little known and hardly ever used matrix of 1853 of dimension 2n × 2n. All methods mentioned in this paper (along with their supporting functions) have been implemented in Sympy and can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py