987 resultados para Lebesgue Constants
Resumo:
Linewidth broadening of exciton luminescence in wurtzite and zinc-blende GaN epilayers was investigated as a function of temperature with photoluminescence. A widely accepted theoretical model was used to fit the experimental data, so that the coupling parameters between exciton and acoustic and longitudinal optical phonons were obtained for both structures. It was found that the coupling constants of both exciton-acoustic optical phonon coupling and exciton-longitudinal optical phonon coupling for zinc-blende GaN are almost twice as much as the corresponding values of wurtzite GaN. These results show that the relatively strong exciton-phonon scattering seems to be characteristic to zinc-blende GaN film. (C) 2002 American Institute of Physics.
Resumo:
Excitonic states in AlxGa1-xN/GaN quantum wells (QWs) are studied within the framework of effective-mass theory. Spontaneous and piezoelectric polarizations are included and their impact on the excitonic states and optical properties are studied. We witnessed a significant blue shift in transition energy when the barrier width decreases and we attributed this to the redistribution of the built-in electric field between well layers and barrier layers. For the exciton the binding energies, we found in narrow QWs that there exists a critical value for barrier width, which demarcates the borderline for quantum confinement effect and the quantum confined Stark effect. Exciton and free carrier radiative lifetimes are estimated by simple argumentation. The calculated results suggest that there are efficient non-radiative mechanisms in narrow barrier QWs. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.
Resumo:
The rapid carrier capture and relaxation processes in InAs/GaAs quantum dots were studied at 77K by using a simple degenerate pump-probe technique. A rising process was observed in the transient reflectivity, following the initial fast relaxation associated with GaAs bulk matrix, and this rising process was assigned to be related to the carrier capture from the GaAs barriers to InAs layers. The assignment was modeled using Kramers-Kronig relation. By analyzing the rising process observed in the transient reflectivity, the carrier capture time constants were obtained. The measured capture times decrease with the increase of carrier concentration.
Resumo:
Strains in cubic GaN films grown on GaAs (001) were measured by a triple-axis x-ray diffraction method. Residual strains in the as-grown epitaxial films were in compression, contrary to the predicted tensile strains caused by large lattice mismatch between epilayers and GaAs substrates (20%). It was also found that the relief of strains in the GaN films has a complicated dependence on the growth conditions. We interpreted this as the interaction between the lattice mismatch and thermal mismatch stresses. The fully relaxed lattice constants of cubic GaN are determined to be 4.5038 +/- 0.0009 Angstrom, which is in excellent agreement with the theoretical prediction of 4.503 Angstrom. (C) 2000 American Institute of Physics. [S0021-8979(00)07918-4].
Resumo:
We have prepared the polymer thin films of a 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DChTP)/poly (methyl methacrylate) (PMMA) guest-host system by spin coating. In order to investigate their temporal and temperature stability, we have measured their dielectric relaxation spectra including the frequency dependence of the real and imaginary parts of dielectric constants. The investigated frequency ranged from 50 Hz to 10 MHz. The measured temperature range above the glass transition temperature T-g (95 degrees C) of the DCNP/PMMA system was from 95 degrees C to 1250C. By using the Adam-Gibbs model, the temperature dependence of the characteristic time tau above T-g was fitted, and the values of the characteristic times tau below T-g were estimated. The lifetimes of the polymer were evaluated by the Kohlrausch-Williams Watts (KWW) empirical decay model. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of rapid thermal annealing (RTA) on the optical properties of GaNxAs1-x/GaAs strained single quantum well (SQW) was studied by low-temperature photoluminescence (PL). The GaNxAs1-x/GaAs SQW structures were prepared by dc active nitrogen plasma assisted molecular beam epitaxy. PL measurements on a series of samples with different well widths and nitrogen compositions were used to evaluate the effects of RTA. The annealing temperature and time were varied from 650 to 850 degrees C and 30 s to 15 min, respectively. Remarkable improvements of the optical properties of the samples were observed after RTA under optimum conditions. The interdiffusion constants have been calculated by taking into account error function diffusion and solving the Schrodinger equation. The estimated interdiffusion constants D are 10(-17)-10(-16) cm(2)/s for the earlier annealing conditions. Activation energies of 6-7 eV are obtained by fitting the temperature dependence of the interdiffusion constants. (C) 2000 American Institute of Physics. [S0021-8979(00)10401-3].
Resumo:
The crystallographic and intrinsic magnetic properties of hydride R3Fe29-xTxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) have been investigated. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions, mainly along the a- and b-axis rather than along the c-axis, are observed for all the compounds upon hydrogenation. Hydrogenation leads to an increase in Curie temperature. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and Tb(3)Fc(27.0)Cr(2.0)H(2.8), and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2 Abnormal crystallographic and magnetic properties of Ce3Fe29-xTxHy suggest that the Ce ion is non-triply ionized.
Resumo:
A systematic study of the phase formation, structure and magnetic properties of the R3Fe29-xTx compounds (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) has been performed upon hydrogenation. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions mainly along the a- and b-axis rather than along the c-axis are observed for all of the compounds upon hydrogenation. Hydrogenation leads to an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. First order magnetization processes (FOMP) occur in the external magnetic fields for Nd3Fe24.5Cr4.5H5.0, Tb3Fe27.0Cr2.0H2.8, and Gd3Fe28.0Cr1.0H4.2 compounds.
Resumo:
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29 - xVxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants a, b, and c and the unit cell volume of R3Fe29 - xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y = 6.5 and 6.9 in these hydrides. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of the structural and intrinsic magnetic properties of the hydrides R3Fe29-xCrxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Hydrogenation lends to a relative volume expansion of the unit cell and a decrease in x-ray density for each compound. Anisotropic expansions mainly along the n- and b-axes rather than along the c-axis for all of the compounds upon hydrogenation are observed. The lattice constants and the unit-cell volume of R3Fe29-xCrx and R3Fe29-xCrxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. After hydrogenation a decrease of 0.34 mu(B)/Fe in the average Fe atomic magnetic moment and a slight increase in the anisotropy field for Y3Fe27.2Cr1.8 are achieved at 4.2 K. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and TD3Fe27.0Cr2.0H2.8, and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2. The abnormal crystallographic and magnetic properties of Ce3Fe25.0Cr4.0 and Ce3Fe25.0Cr4.0H5.4 suggest that the Ce ion non-triply ionized.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xCrxN4 (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. After nitrogenation the relative volume expansion of each nitride is around between 5% and 7%. The nitrogenation results in a good improvement in the Curie temperature, the saturation magnetization and anisotropy fields at 4.2 K, and room temperature for R3Fe29-xCrxN4. Magnetohistory effects of R3Fe29-xCrxN4 and R3Fe29-xCrx (R=Nd and Sm) are observed in a low field of 0.04 T. First order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of 2.8 T at 4.2 K. After nitrogenation, the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy-cone structure to the uniaxial. The good intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance hard magnets. (C) 1998 American Institute of Physics.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.
Resumo:
A systematic investigation of nitrides R3F29-xCrxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The nitrogen concentration in the nitride R3Fe29-xCrxNy was determined to be y = 4. Nitrogenation leads to a relative volume expansion of about 5.3%. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. In average, the increase of Curie temperature upon nitrogenation is about 200 K, compared with its parent compound. The nitrogenation also results in a remarkable improvement in the saturation magnetization and anisotropy fields for R3Fe29-x CrxN4 at 4.2 K and room temperature, compared with their parent compounds. A spin reorientation of Nd3Fe24.5Cr4.5N4 occurs at around 368 K, which is 138 K higher than that of Nd3F24.5Cr4.5. Magnetohistory effects of R3Fe29-xCrxN4 (R = Nd and Sm) are observed in a low field of 0.04 T. First-order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of around 3.0 T at 4.2 K. After nitrogenation the easy magnetization direction of Sm3Fe24.0C5.0 is changed from the easy-cone structure to the uniaxial. The excellent intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance permanent magnets.
Resumo:
CdS clusters are formed in the pores of a mesoporous zeolite in which the size of the clusters may be adjusted. The size of the clusters increases as the CdS loading is increased. X-ray diffraction investigation shows that the lattice constants of the clusters contract upon increasing size. This contraction is attributed to an increase of the static pressure exercised by the zeolite framework as the clusters grow bigger. Both the excitonic and trapped emission bands are detected and become more intensive upon decreasing size. Three absorption bands appear in the photoluminescence excitation (PLE) spectra and they shift to the blue as cluster size decreases. Based on the effective-mass approximation, the three bands are assigned to the 1S-1S, 1S-1P and 1S-1D transitions, respectively. The size-dependence of the PLE spectra can also be explained. (C) 1997 Elsevier Science Ltd.