995 resultados para Lead ores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003-2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of the geologic history of the Yenisey Ridge, which developed as an accretionary collision orogen on the western margin of the Siberian craton is essential to understanding the evolution of mobile belts surrounding older cratons, as well as to resolving the recently much debated problem of whether Siberia was part of the supercontinent Rodinia. Available paleotectonic models suggest that this supercontinent was assembled at the Middle-Late Riphean boundary (1100-900 Ma) as a result of the Grenville orogeny, the first long-lived mountain building event which occurred in geosynclinal areas during the Neogaea. However, the character of crustal evolution at that stage is still speculative due to the lack of reliable and conclusive isotope data. In many current geodynamic models, a common underlying assumption is that the Yenisey Ridge showed very little endogenic activity for 1 Gyr, from the time of Tarak granite emplacement (1900-1840 Ma) to the Middle Neoproterozoic (~750 Ma). On the basis of this assumption, several recent studies suggested the absence of Grenvillian collisional events within the Yenisey Ridge. The results of the SHRIMP II U-Pb analysis of rift-related plagiogranites of the Nemtikha Complex, Yenisey Ridge (1380-1360 Ma) suggest an increase in magmatic activity in the Mesoproterozoic. Interpretation of these results in terms of a supercontinent cycle may help find evidence for possible occurrence of the Grenville orogeny on the western margin of the Siberian craton. With this in mind, we attempted to reconstruct using recent geochronological constraints the evolution of metapelitic rocks from the Teya polymetamorphic complex (TPMC), which is a good example of superimposed zoning of low and medium-pressure facies series. High precision age determinations from rock complexes formed in different geodynamic settings under different thermodynamic conditions and geothermal gradients were used to distinguish several major metamorphic events and unravel their time relations with tectonic and magmatic activity in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.