931 resultados para Lattice-Valued Fuzzy connectives. Extensions. Retractions. E-operators
Resumo:
In this paper, we present an investigation into using fuzzy methodologies to guide the construction of high quality feasible examination timetabling solutions. The provision of automated solutions to the examination timetabling problem is achieved through a combination of construction and improvement. The enhancement of solutions through the use of techniques such as metaheuristics is, in some cases, dependent on the quality of the solution obtained during the construction process. With a few notable exceptions, recent research has concentrated on the improvement of solutions as opposed to focusing on investigating the ‘best’ approaches to the construction phase. Addressing this issue, our approach is based on combining multiple criteria in deciding on how the construction phase should proceed. Fuzzy methods were used to combine three single construction heuristics into three different pair wise combinations of heuristics in order to guide the order in which exams were selected to be inserted into the timetable solution. In order to investigate the approach, we compared the performance of the various heuristic approaches with respect to a number of important criteria (overall cost penalty, number of skipped exams, number of iterations of a rescheduling procedure required and computational time) on twelve well-known benchmark problems. We demonstrate that the fuzzy combination of heuristics allows high quality solutions to be constructed. On one of the twelve problems we obtained lower penalty than any previously published constructive method and for all twelve we obtained lower penalty than when any of the single heuristics were used alone. Furthermore, we demonstrate that the fuzzy approach used less backtracking when constructing solutions than any of the single heuristics. We conclude that this novel fuzzy approach is a highly effective method for heuristically constructing solutions and, as such, has particular relevance to real-world situations in which the construction of feasible solutions is often a difficult task in its own right.
Resumo:
This paper reports on atomistic simulations of the interactions between the dominant lattice dislocations in ?-TiAl (<1 0 1] superdislocations) with all three kinds of ?/?-lamellar boundaries in polysynthetically twinned (PST) TiAl. The purpose of this study is to clarify the early stage of lamellar boundary controlled plastic deformation in PST TiAl. The interatomic interactions in our simulations are described by a bond order potential for L10-TiAl which provides a proper quantum mechanical description of the bonding. We are interested in the dislocation core geometries that the lattice produces in proximity to lamellar boundaries and the way in which these cores are affected by the elastic and atomistic effects of dislocation-lamellar boundary interaction. We study the way in which the interfaces affect the activation of ordinary dislocation and superdislocation slip inside the ?-lamellae and transfer of plastic deformation across lamellar boundaries. We find three new phenomena in the atomic-scale plasticity of PST TiAl, particularly due to elastic and atomic mismatch associated with the 60° and 120° ?/?-interfaces: (i) two new roles of the ?/?-interfaces, i.e. decomposition of superdislocations within 120° and 60° interfaces and subsequent detachment of a single ordinary dislocation and (ii) blocking of ordinary dislocations by 60° and 120° interfaces resulting in the emission of a twinning dislocation.