961 resultados para Last deglaciation
A clinical approach to arterial ischemic childhood stroke: increasing knowledge over the last decade
Resumo:
Childhood stroke is increasingly being recognized as an important burden not only for affected children and families, but also for socioeconomic reasons. A primary problem is delayed diagnosis, due to the many mimics of childhood stroke, and the variety of manifesting symptoms. The most important is hemiparesis (with/without dysphasia or facial palsy), but ataxia, seizures, and many more are also possible. Suspicion of stroke has to be ascertained by neuroimaging, gold standard being (diffusion weighted) magnetic resonance. Risk factors are multiple, but their presence might help to increase the suspicion of stroke. The most important factors are infectious/parainfectious etiologies, frequently possibly manifesting by transient focal cerebral arteriopathy (FCA). Cardiological underlying problems are the second most important. Arteriopathies can be detected in about half of the children, besides FCA and dissection and MoyaMoya disease are the most important. Hereditary coagulopathies increase the risk of stroke. There is still a controversy on best treatment in children: platelet antiaggregation and heparinization are used about equally. Thrombolysis is being discussed increasingly. Severity of symptoms at manifestation and on follow-up are not less significant in children than in young adults. About two-third of the children have significant residual neurological problems and a majority cognitive and behavior problems.
Resumo:
Background: Therapeutic hypothermia (TH) following perinatal asphyxial encephalopathy in term infants improves mortality and neurodevelopmental outcome. In Europe, most neonatal units perform active cooling whereas in Switzerland passive cooling is predominantly used. Aims: (i) To determine how many infants were cooled within the last 5 years in Switzerland, (ii) to assess the cooling methods, (iii) to evaluate the variation of temperature of different cooling methods, and (iv) to evaluate the use of neuromonitoring. Study design: Retrospective cohort study. Patients: Notes of all cooled term infants between March 2005 and December 2010 in 9 perinatal and two paediatric intensive care centres were retrospectively reviewed. Active cooling was compared to passive cooling alone and to passive cooling in combination with gel packs. Results: 150 infants were cooled. Twenty-seven (18.2%) were cooled actively, 34 (23%) passively and 87 (58.8%) passively in combination with gel packs. Variation of temperature was significantly different between the three methods. Passive cooling had a significant higher variation of temperature (SD of 0.89) than both passive cooling in combination with gel packs (SD of 0.79) and active cooling (SD of 0.76). aEEG before TH was obtained in 35.8% of the infants and 86.5% had full EEG. One cUS was performed in 95.3% and MRI in 62.2% of the infants. Conclusion: Target temperature can be achieved with all three cooling methods. Passive cooling has the highest variation of temperature. Neuromonitoring should be improved in Swiss neonatal and paediatric intensive care units. Our results stress the importance of national registries.
Resumo:
Using simulated climate data from the comprehensive coupled climate model IPSL CM4, we simulate the Greenland ice sheet (GrIS) during the Eemian interglaciation with the three-dimensional ice sheet model SICOPOLIS. The Eemian is a period 126 000 yr before present (126 ka) with Arctic temperatures comparable to projections for the end of this century. In our simulation, the northeastern part of the GrIS is unstable and retreats significantly, despite moderate melt rates. This result is found to be robust to perturbations within a wide parameter space of key parameters of the ice sheet model, the choice of initial ice temperature, and has been reproduced with climate forcing from a second coupled climate model, the CCSM3. It is shown that the northeast GrIS is the most vulnerable. Even a small increase in melt removes many years of ice accumulation, giving a large mass imbalance and triggering the strong ice-elevation feedback. Unlike the south and west, melting in the northeast is not compensated by high accumulation. The analogy with modern warming suggests that in coming decades, positive feedbacks could increase the rate of mass loss of the northeastern GrIS, exceeding the recent observed thinning rates in the south.