980 resultados para Laser plasma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic surface waves at the interface between a low-temperature nonisothermal dusty plasma and a metallic wall are investigated. The plasma contains massive negatively charged impurity or dust particles. It is shown that the impurities can significantly alter the characteristics and damping of the surface waves by reducing their phase velocity and causing charging-related damping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent theory of ion-acoustic waves in dusty gas discharge plasmas is presented. The plasma is contaminated by fine dust particles with variable charge. The stationary state of the plasma and the dispersion and damping characteristics of the waves are investigated accounting for ionization, recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dusts, as well as charging collisions with the dusts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of Langmuir waves in nonisothermal plasmas contaminated by fine dust particles with variable charge is investigated for a self-consistent closed system. Dust charge relaxation, ionization, recombination, and collisional dissipation are taken into account. It is shown that the otherwise unstable coupling of the Langmuir and dust-charge relaxation modes becomes stable and the Langmuir waves are frequency down-shifted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle manipulation by various plasma forces in near-substrate areas of the Integrated Plasma-Aided Nanofabrication Facility (IPANF) is investigated. In the IPANF, high-density plasmas of low-temperature rf glow discharges are sustained. The model near-substrate area includes a variable-length pre-sheath, where a negatively charged nanoparticle is accelerated, and a self-consistent collisionless sheath with a repulsive electrostatic potential. Conditions enabling the nanoparticle to overcome the repulsive barrier and deposit onto the substrate are investigated numerically and experimentally. Under certain conditions the momentum gained by the nanoparticle in the pre-sheath area appears to be sufficient for the driving ion drag force to outbalance the repulsive electrostatic and thermophoretic forces. Numerical results are applied for the explanation of size-selective nanoparticle deposition in the Ar+H2+CH4 plasma-assisted chemical vapor deposition of various carbon nanostructure patterns for electron field emitters and are cross-referenced by the field emission scanning electron microscopy. It is shown that the nanoparticles can be efficiently manipulated by the temperature gradient-controlled thermophoretic force. Experimentally, the temperature gradients in the near-substrate areas are measured in situ by means of the temperature gradient probe and related to the nanofilm fabrication conditions. The results are relevant to plasma-assisted synthesis of numerous nanofilms employing structural incorporation of the plasma-grown nanoparticles, including but not limited to nanofabrication of ordered single-crystalline carbon nanotip arrays for electron field emission applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.