972 resultados para LI-FRAUMENI
Resumo:
Coherent Ge(Si)/Si(001) quantum dot islands grown by solid source molecular beam epitaxy at a growth temperature of 700degreesC were investigated using transmission electron microscopy working at 300 kV. The [001] zone-axis bright-field diffraction contrast images of the islands show strong periodicity with the change of the TEM sample substrate thickness and the period is equal to the effective extinction distance of the transmitted beam. Simulated images based on finite element models of the displacement field and using multi-beam dynamical diffraction theory show a high degree of agreement. Studies for a range of electron energies show the power of the technique for investigating composition segregation in quantum dot islands. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen adsorption in alkali-doped carbon materials is investigated theoretically. Our calculations show that hydrogen molecules can be physically adsorbed on alkali-doped graphite at 0 K but such an adsorption is thermodynamically unfavourable. The binding energy of hydrogen adsorption decreases significantly with the increase in temperature and becomes nearly zero at ambient temperature. We suggest that it may be unlikely to observe any hydrogen uptake in alkali-doped carbon materials at or above ambient temperature in the TGA (thermogravimetric) system, the previously reported hydrogen uptake in alkali-doped carbon materials was caused by either uncyclable chemisorbed hydrogen on the defects of carbon (defects were produced by repeated heat treatment) and/or moisture adsorption. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A comprehensive study has been conducted to compare the adsorptions of alkali metals (including Li, Na, and K) on the basal plane of graphite by using molecular orbital theory calculations. All three metal atoms prefer to be adsorbed on the middle hollow site above a hexagonal aromatic ring. A novel phenomenon was observed, that is, Na, instead of Li or K, is the weakest among the three types of metal atoms in adsorption. The reason is that the SOMO (single occupied molecular orbital) of the Na atom is exactly at the middle point between the HOMO and the LUMO of the graphite layer in energy level. As a result, the SOMO of Na cannot form a stable interaction with either the HOMO or the LUMO of the graphite. On the other hand, the SOMO of Li and K can form a relatively stable interaction with either the HOMO or the LUMO of graphite. Why Li has a relatively stronger adsorption than K on graphite has also been interpreted on the basis of their molecular-orbital energy levels.
Resumo:
Reviews the book "Shashibiya: Staging Shakespeare in China," by Li Ruru
Resumo:
Ordered mesoporous carbon CMK-5 was comprehensively tested for the first time as electrode materials in lithium ion battery. The surface morphology, pore structure and crystal structure were investigated by Scanning Electronic Microscopy (SEM), N-2 adsorption technique and X-ray diffraction (XRD) respectively. Electrochemical properties of CMK-5 were studied by galvanostatic cycling and cyclic voltammetry, and compared with conventional anode material graphite. Results showed that the reversible capacity of CMK-5 was 525 mAh/g at the third charge-discharge cycle and that CMK-5 was more compatible for quick charge-discharge cycling because of its special mesoporous structure. Of special interest was that the CMK-5 gave no peak on its positive sweep of the cyclic voltammetry, which was different from all the other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also applied to investigate the charge-discharge characteristics of CMK-5.
Resumo:
Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A series of Li-promoted CaO catalysts with Li loadings in the range 0.26–4.0 wt% have been prepared which are effective in the transesterification of glyceryl tributyrate and methanol to methyl butanoate. A Li content of 1.23 wt% provides the optimum activity towards methyl butanoate formation. Li doping increases the base strength of CaO, and XPS and DRIFTS measurements reveal that the optimum loading correlates with the formation of an electron deficient surface Li+ species and associated –OH species at defect sites on the support. High Li loadings result in bulk LiNO3 formation and a drop in surface area and corresponding catalytic activity.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.
Resumo:
In this report we have investigated the use of Ni foam substrates as anode current collectors for Li-ion batteries. As the majority of reports in the literature focus on hydrothermal formation of materials on Ni foam followed by a high temperature anneal/oxidation step, we probed the fundamental electrochemical responses of as received Ni foam substrates and those subjected to heating at 100°C, 300°C and 450°C. Through cyclic voltammetry and galvanostatic testing, it is shown that the as received and 100°C annealed Ni foam show negligible electrochemical activity. However, Ni foams heated to higher temperature showed substantial electrochemical contributions which may lead to inflated capacities and incorrect interpretations of CV responses for samples subjected to high temperature anneals. XRD, XPS and SEM analyses clearly illustrate that the formation of electrochemically active NiO nanoparticles on the surface of the foam is responsible for this behavior. To further investigate the contribution of the oxidized Ni foam to the overall electrochemical response, we formed Co3O4 nanoflowers directly on Ni foam at 450°C and showed that the resulting electrochemical response was dominated by NiO after the first 10 charge/discharge cycles. This report highlights the importance of assessing current collector activity for active materials grown on transition metal foam current collectors for Li-ion applications.
Resumo:
The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core–shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li+ reaction mechanism for β-AgVO3. Ag+ between the van der Waals layers of the vanadium oxide is reduced during discharge and deposited as metallic Ag, the vacant sites are then occupied by Li+.
Resumo:
Spinel harzburgites from ODP Leg 209 (Sites 1272A, 1274A) drilled at the Mid-Atlantic ridge between 14°N and 16°N are highly serpentinized (50-100%), but still preserve relics of primary phases (olivine >= orthopyroxene >> clinopyroxene). We determined whole-rock B and Li isotope compositions in order to constrain the effect of serpentinization on d11B and d7Li. Our data indicate that during serpentinization Li is leached from the rock, while B is added. The samples from ODP Leg 209 show the heaviest d11B (+29.6 to +40.52 per mil) and lightest d7Li (-28.46 to +7.17 per mil) found so far in oceanic mantle. High 87Sr/86Sr ratios (0.708536 to 0.709130) indicate moderate water/rock ratios (3 to 273, on the average 39), in line with the high degree of serpentinization observed. Applying the known fractionation factors for 11B/10B and 7Li/6Li between seawater and silicates, serpentinized peridotite in equilibrium with seawater at conditions corresponding to those of the studied drill holes (pH: 8.2; temperature: 200 °C) should have d11B of +21.52 per mil and d7Li of +9.7 per mil. As the data from ODP Leg 209 are clearly not in line with this, we modelled a process of seawater-rock interaction where d11B and d7Li of seawater evolve during penetration into the oceanic plate. Assuming chemical equilibrium between fluid and a rock with d11B and d7Li of ODP Leg 209 samples, we obtain d11B and d7Li values of +50 to +60 per mil, -2 to +12 per mil, respectively, for the coexisting fluid. In the oceanic domain, no hydrothermal fluids with such high d11B have yet been found, but are predicted by theoretical calculations. Combining the calculated water/rock ratios with the d7Li and d11B evolution in the fluid, shows that modification of d7Li during serpentinization requires higher water/rock ratios than modification of d11B. Extremely heavy d11B in serpentinized oceanic mantle can potentially be transported into subduction zones, as the B budget of the oceanic plate is dominated by serpentinites. Extremely light d7Li is unlikely to survive as the Li budget is dominated by the oceanic crust, even at small fractions.
Resumo:
Li-delta18O-SiO2 relationships have been examined for suites of spilitized basaltic rocks (DSDP 504B; Xigaze Ophiolite; Blanco Fracture Zone; Greater Caucasus; Rhenohercynian Fold Belt) and intra-plate evolved tholeiites (Northern Hessian Depression and Vogelsberg, W Germany; Mount Falla, Transantarctic Mountains). Relative to unaltered MORB and intra-plate primary olivine tholeiites, both the spilitic rocks and the evolved tholeiites are characterized by Li and 18O enrichment. For the spilitic rocks, Li and 18O enrichment is accompanied by a loss of SiO2 as a result of seawater hydrothermal alteration, whereas the evolved tholeiites have gained SiO2, Li and 18O from fractionation of mafic phases and assimilation of crustal rocks. On Li vs. SiO2 and delta18O vs. SiO2 diagrams, the two rock groups plot largely in distinct fields, suggesting the possibility of so distinguishing between such lithologies in the ancient rock record. Mafic granulite xenoliths from the Northern Hessian Depression have elevated Li and 18O abundances at low SiO2 contents. Even after correction for extraction of felsic components, their Li-delta18O-SiO2 signatures plot within the field of spilitic protoliths, suggesting that the lower crust in this region contains relics of spilitic rocks from a former oceanic crust.