982 resultados para Keywords: Hadron-Hadron Scattering
Resumo:
The results of searches for new resonances decaying to a pair of massive vector bosons (WW, WZ, ZZ) are presented. All searches are performed using 5.0 fb-1 of proton-proton collisions, at TeV of center of mass energy, collected by the Compact Muon Solenoid detector at the Large Hadron Collider. No significant excess compared to the standard model background expectation is observed, and upper limits at 95% confidence level are set on the production cross section times the branching fraction of hypothetical particles decaying to a pair of vector bosons. The results are interpreted in the context of several benchmark models, such as the Randall-Sundrum gravitons, the Sequential Standard Model W′, and Technicolor. Graviton resonances in the Randall-Sundrum model with masses smaller than 940 GeV/c2, for coupling parameter k/MPl = 0.05 are excluded. Bulk (ADPS) Randall-Sundrum gravitons with masses smaller than 610 GeV/c2 are excluded, for k/MPl = 0.05. Sequential Standard Model W′ with masses smaller than 1143 GeV/c2 are excluded, as well as ρTC in the 167-687 GeV/c2 mass range, in Low Scale Technicolor models with M(πTC) = 3/4 M(ρTC) - 25 GeV/c2. © 2013 IOP Publishing Ltd.
Resumo:
Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)