986 resultados para Kevlar aramide fiber-thermoplastic polyurethane (TPU)
Resumo:
An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.
Resumo:
Visible and near-infrared laser light pulses were coupled into two different types of optical fiber cavities. One cavity consisted of a short strand of fiber waveguide that contained two identical fiber Bragg gratings. Another cavity was made using a loop of optical fiber. In either cavity ∼ 40 ps laser pulses, which were generated using a custom-built gainswitched diode laser, circulated for a large number of round trips. The optical loss of either cavity was determined from the ring-down times. Cavity ring-down spectroscopy was performed on 200 pL volumes of liquid samples that were injected into the cavities using a 100 μm gap in the fiber loop. A detection limit of 20 ppm of methylene blue dye in aqueous solution, corresponding to a minimum absorptivity of εC < 6 cm−1, was realized.
Resumo:
Objective: To examine the association between dietary glycemic index (GI), glycemic load (GL), total carbohydrate, sugars, starch, and fiber intakes and the risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma.
Methods: In an all-Ireland study, dietary information was collected from patients with esophageal adenocarcinoma (n = 224), long-segment Barrett’s esophagus (n = 220), reflux esophagitis (n = 219), and population-based controls (n = 256). Multiple logistic regression analysis examined the association between dietary variables and disease risk by tertiles of intake and as continuous variables, while adjusting for potential confounders.
Results: Reflux esophagitis risk was positively associated with starch intake and negatively associated with sugar intake. Barrett’s esophagus risk was significantly reduced in people in the highest versus the lowest tertile of fiber intake (OR 0.44 95%CI 0.25–0.80). Fiber intake was also associated with a reduced risk of esophageal adenocarcinoma, as was total carbohydrate intake (OR 0.45 95%CI 0.33–0.61 per 50 g/d increase). However, an increased esophageal adenocarcinoma risk was detected per 10 unit increase in GI intake (OR 1.42 95%CI 1.07–1.89).
Conclusions: Our findings suggest that fiber intake is inversely associated with Barrett’s esophagus and esophageal adenocarcinoma risk. Esophageal adenocarcinoma risk is inversely associated with total carbohydrate consumption but positively associated with high GI intakes.
Resumo:
The association fiber tracts integrity of the inter-hemispheric and within-hemispheric communication was poor understood in amnestic type mild cognitive impairment (aMCI) patients by diffusion tensor imaging (DTI). A region of interest-based DTI approach was applied to explore fiber tract differences between 22 aMCI patients and 22 well-matched normal aging. Correlations were also sought between fractional anisotropy (FA) values and the cognitive performance scores in the aMCI patients. Extensive impairment of association fiber tracts integrity was observed in aMCI patients, including bilateral inferior fronto-occipital fascicles, the genu of corpus callosum, bilateral cingulate bundles and bilateral superior longitudinal fascicles II (SLE II) subcomponent. In addition, the FA value of right SLE II was significantly negatively correlated to the performance of Trail Making Test A and B, whilst the values of right posterior cingulate bundle was significantly positive correlation with MMSE score. As aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), this study suggested that investigation of association fiber tracts between remote cortexes may yield important new data to predict whether a patient will eventually develop AD.
Resumo:
In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).