1000 resultados para KCl
Resumo:
First-order temporal logic is a coincise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics have identified important enumerable and even decidable fragments. In this paper we present the first resolution-based calculus for monodic first-order temporal logic. Although the main focus of the paper is on establishing completeness result, we also consider implementation issues and define a basic loop-search algorithm that may be used to guide the temporal resolution system.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
In this paper a state of the art of a system of automated deduction called SAD is described . An architecture of SAD corresponds well to a modern vision of the Evidence Algorithm programme, initiated by Academician V.Glushkov.
Resumo:
We introduce a calculus of stratified resolution, in which special attention is paid to clauses that "define" relations. If such clauses are discovered in the initial set of clauses, they are treated using the rule of definition unfolding, i.e. the rule that replaces defined relations by their definitions. Stratified resolution comes with a powerful notion of redundancy: a clause to which definition unfolding has been applied can be removed from the search space. To prove the completeness of stratified resolution with redundancies, we use a novel combination of Bachmair and Ganzingerâ??s model construction technique and a hierarchical construction of orderings and least fixpoints.
Resumo:
In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.