988 resultados para Jurisdiction over aircraft.
Resumo:
Effects of wall temperature on stabilities of hypersonic boundary layer over a 7-degree half-cone-angle blunt cone are studied by using both direct numerical simulation (DNS) and linear stability theory (LST) analysis. Four isothermal wall cases with Tw/T0= 0.5, 0.7, 0.8 and 0.9, as well as an adiabatic wall case are considered. Results of both DNS and LST indicate that wall temperature has significant effects on the growth of disturbance waves. Cooling the surface accelerates unstable Mack II mode waves and decelerates the first mode (Tollmien–Schlichting mode) waves. LST results show that growth rate of the most unstable Mack II mode waves for the cases of cold wall Tw/T0=0.5 and 0.7 are about 45% and 25% larger than that for the adiabatic wall, respectively. Numerical results show that surface cooling modifies the profiles of rdut/dyn and temperature in the boundary layers, and thus changes the stability haracteristic of the boundary layers, and then effects on the growth of unstable waves. The results of DNS indicate that the disturbances with the frequency range from about 119.4 to 179.1 kHz, including the most unstable Mack modes, produce strong mode competition in the downstream region from about 11 to 100 nose radii. And adiabatic wall enhances the amplitudes of disturbance according to the results of DNS, although the LST indicates that the growth rate of the disturbance of cold wall is larger. That because the growth of the disturbance does not only depend on the development of the second unstable mode.
Resumo:
Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths which cannot be obtained by molecular dynamics simulation alone.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.
Resumo:
Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum /particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.
Resumo:
ENGLISH: In May 1971, a joint united states - Mexican experiment, Project Little Window 2, (LW-2) involving data collected by satellite, aircraft and ship sensors was made in the southern part of the Gulf of California. LW-2 was planned as an improved and enlarged version of LW-l (conducted the previous year; Stevenson and Miller, 1971) with field work scheduled to be made within a 200 by 200 km square region in the Gulf of California. The purposes of the new field study were to determine through coordinated measurements from ships, aircraft and satellites, the utility of weather satellites to measure surface temperature features of the ocean from space and specifically to evaluate the high resolution infrared sensors aboard N~ 1, ITOS 1 and NIMBUS 4 and to estimate the magnitude of the atmospheric correction factors needed to bring the data from the spacecraft sensors into agreement with surface measurements. Due to technical problems during LW-2, however, useful data could not be obtained from ITOS 1 and NIMBUS 4 so satellite information from only NOAA-1 was available for comparison. In addition, a new purpose was added, i.e., to determine the feasibility of using an Automatic picture Transmission (APT) receiver on shore and at sea to obtain good quality infrared data for the local region. SPANISH: En mayo 1971, los Estados Unidos y México realizaron un experimento en conjunto, Proyecto Little Window 2 (LW-2), en el que se incluyen datos obtenidos mediante captadores de satélites, aviones y barcos en la parte meridional del Golfo de California. Se planeó LW-2 para mejorar y ampliar el proyecto de LW-l (conducido el año anterior; Stevenson y Miller, 1971), realizándose el trabajo experimental en una región de 200 por 200 km cuadrados, en el Golfo de California. El objeto de este nuevo estudio experimental fue determinar mediante reconocimientos coordinados de barcos, aviones y satélites la conveniencia de los satélites meteorológicos para averiguar las características de la temperatura superficial del océano desde el espacio, y especialmente, evaluar los captadores infrarrojos de alta resolución a bordo de NOAA 1, ITOS 1 Y NIMBUS 4, y estimar la magnitud de los factores de corrección atmosféricos necesarios para corregir los datos de los captadores espaciales para que concuerden con los registros de la superficie. Sin embargo, debido a problemas técnicos durante LW-2, no fue posible obtener datos adecuados de ITOS 1 y NIMBUS 4, as1 que solo se pudo disponer de la información de NOAA 1 para hacer las comparaciones. Además se quiso determinar la posibilidad de usar un receptor de Trasmisión Automático de Fotografias (APT) en el mar para obtener datos infarojos de buena calidad en la región local. (PDF contains 525 pages.)
Resumo:
Six topics in incompressible, inviscid fluid flow involving vortex motion are presented. The stability of the unsteady flow field due to the vortex filament expanding under the influence of an axial compression is examined in the first chapter as a possible model of the vortex bursting observed in aircraft contrails. The filament with a stagnant core is found to be unstable to axisymmetric disturbances. For initial disturbances with the form of axisymmetric Kelvin waves, the filament with a uniformly rotating core is neutrally stable, but the compression causes the disturbance to undergo a rapid increase in amplitude. The time at which the increase occurs is, however, later than the observed bursting times, indicating the bursting phenomenon is not caused by this type of instability.
In the second and third chapters the stability of a steady vortex filament deformed by two-dimensional strain and shear flows, respectively, is examined. The steady deformations are in the plane of the vortex cross-section. Disturbances which deform the filament centerline into a wave which does not propagate along the filament are shown to be unstable and a method is described to calculate the wave number and corresponding growth rate of the amplified waves for a general distribution of vorticity in the vortex core.
In Chapter Four exact solutions are constructed for two-dimensional potential flow over a wing with a free ideal vortex standing over the wing. The loci of positions of the free vortex are found and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.
The two-dimensional trajectories of an ideal vortex pair near an orifice are calculated in Chapter Five. Three geometries are examined, and the criteria for the vortices to travel away from the orifice are determined.
Finally, Chapter Six reproduces completely the paper, "Structure of a linear array of hollow vortices of finite cross-section," co-authored with G. R. Baker and P. G. Saffman. Free streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored vortices. If each vortex has area A and the separation is L, then there are two possible shapes if A^(1/2)/L is less than 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable, while the less deformed shape is stable.
Resumo:
The furnace temperature and heat flux distributions of 1 MW tangentially fired furnace were studied during coal-over-coal reburn, and the influences of the position of reburn nozzle and reburn fuel fraction on furnace temperature and heat flux distributions were investigated. Compared with the baseline, the flue gas temperature is 70–90 C lower in primary combustion and 130–150 C higher at furnace exit, and the variations of the flue gas temperature distributions along furnace height are slower. The temperature distribution along the width of furnace wall decreases with the increase of the relative furnace height. In the primary combustion zone and the reburn zone, the temperature and heat flux distributions of furnace wall are much non-uniform and asymmetric along the width of furnace wall, those of furnace wall in the burnout zone are relatively uniform, and the temperature non-uniformity coefficients of the primary combustion zone, the reburn zone and the burnout zone are 0.290, 0.100 and 0.031, respectively.
Resumo:
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.
This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.
The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Resumo:
4 p.