928 resultados para Jones, Christopher, 1570 (ca.)-1622.
Resumo:
The hemagglutinins (HAs) of human H1 and H3 influenza viruses and avian H5 influenza virus were produced as recombinant fusion proteins with the human immunoglobulin Fc domain. Recombinant HA-human immunoglobulin Fc domain (HA-HuFc) proteins were secreted from baculovirus-infected insect cells as glycosylated oligomer HAs of the anticipated molecular mass, agglutinated red blood cells, were purified on protein A, and were used to immunize mice in the absence of adjuvant. Immunogenicity was demonstrated for all subtypes, with the serum samples demonstrating subtype-specific hemagglutination inhibition, epitope specificity similar to that seen with virus infection, and neutralization. HuFc-tagged HAs are potential candidates for gene-to-vaccine approaches to influenza vaccination.
Resumo:
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.
Resumo:
BACKGROUND: Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. METHODS AND RESULTS: We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. CONCLUSIONS: Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets.
Resumo:
Neuronal gap junctions are receiving increasing attention as a physiological means of intercellular communication, yet our understanding of them is poorly developed when compared to synaptic communication. Using microfluorimetry, we demonstrate that differentiation of SN56 cells (hybridoma cells derived from murine septal neurones) leads to the spontaneous generation of Ca(2+) waves. These waves were unaffected by tetrodotoxin (1microM), but blocked by removal of extracellular Ca(2+), or addition of non-specific Ca(2+) channel inhibitors (Cd(2+) (0.1mM) or Ni(2+) (1mM)). Combined application of antagonists of NMDA receptors (AP5; 100microM), AMPA/kainate receptors (NBQX; 20microM), nicotinic AChR receptors (hexamethonium; 100microM) or inotropic purinoceptors (brilliant blue; 100nM) was also without effect. However, Ca(2+) waves were fully prevented by carbenoxolone (200microM), halothane (3mM) or niflumic acid (100microM), three structurally diverse inhibitors of gap junctions, and mRNA for connexin 36 was detected by PCR. Whole-cell patch-clamp recordings revealed spontaneous inward currents in voltage-clamped cells which we inhibited by Cd(2+), Ni(2+) or niflumic acid. Our data suggest that differentiated SN56 cells generated spontaneous Ca(2+) waves which are propagated by intercellular gap junctions. We propose that this system can be exploited conveniently for the development of neuronal gap junction modulators.
Resumo:
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca(2+) homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O(2), 24 h). Basal [Ca(2+)]( i ) and store depletion-mediated Ca(2+) entry were significantly different between the two cell types, yet agonist (ATP)-mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca(2+) entry only in venous cells. Clearly, Ca(2+) signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.
Resumo:
In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.
Resumo:
The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) includes a comparison of observation-based and modeling-based estimates of the aerosol direct radiative forcing. In this comparison, satellite-based studies suggest a more negative aerosol direct radiative forcing than modeling studies. A previous satellite-based study, part of the IPCC comparison, uses aerosol optical depths and accumulation-mode fractions retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) at collection 4. The latest version of MODIS products, named collection 5, improves aerosol retrievals. Using these products, the direct forcing in the shortwave spectrum defined with respect to present-day natural aerosols is now estimated at −1.30 and −0.65 Wm−2 on a global clear-sky and all-sky average, respectively, for 2002. These values are still significantly more negative than the numbers reported by modeling studies. By accounting for differences between present-day natural and preindustrial aerosol concentrations, sampling biases, and investigating the impact of differences in the zonal distribution of anthropogenic aerosols, good agreement is reached between the direct forcing derived from MODIS and the Hadley Centre climate model HadGEM2-A over clear-sky oceans. Results also suggest that satellite estimates of anthropogenic aerosol optical depth over land should be coupled with a robust validation strategy in order to refine the observation-based estimate of aerosol direct radiative forcing. In addition, the complex problem of deriving the aerosol direct radiative forcing when aerosols are located above cloud still needs to be addressed.
Resumo:
This article considers how T. S. Eliot's promotion of the work of the Anglo-Welsh poet David Jones after the Second World War further involved him in a process of considering the resonances of the local and familiar as operative within the displacements of modernity. This promotion therefore retrospectively prioritized an aspect of Eliot's poetics which had been present, but occluded, all along. Conversely, the article considers how similar resonances in Jones's own work were enhanced by his encounter with Eliot's translation of the Francophone Caribbean poet St-John Perse's Anabase, an encounter which enabled Jones to establish an idiom responsive to the divergent cultural affinities inherent in ‘our situation’.
Resumo:
Anthropogenic midden deposits are remarkably well preserved at the Neolithic settlement of atalhöyük and provide significant archaeological information on the types and nature of activities occurring at the site. To decipher their complex stratigraphy and to investigate formation processes, a combination of geoarchaeological techniques was used. Deposits were investigated from the early ceramic to late Neolithic levels, targeting continuous sequences to examine high resolution and broader scale changes in deposition. Thin-section micromorphology combined with targeted phytolith and geochemical analyses indicates they are composed of a diverse range of ashes and other charred and siliceous plant materials, with inputs of decayed plants and organic matter, fecal waste, and sedimentary aggregates, each with diverse depositional pathways. Activities identified include in situ burning, with a range of different fuel types that may be associated with different activities. The complexity and heterogeneity of the midden deposits, and thus the necessity of employing an integrated microstratigraphic approach is demonstrated, as a prerequisite for cultural and palaeoenvironmental reconstructions.
Resumo:
BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO3 in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces, rather than in the bulk of aragonite particles. However, the total Mg content in the bulk and surface of aragonite particles was found to be too small to account for the measured Mg/Ca ratios in corals. We therefore argue that most Mg in corals is either highly metastable in the aragonite lattice, or is located outside the aragonite phase of the coral skeleton, and we discuss the implications of this finding for Mg/Ca paleothermometry.