933 resultados para Intracellular Cholesterol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Statin therapy reduces the risk of occlusive vascular events, but uncertainty remains about potential effects on cancer. We sought to provide a detailed assessment of any effects on cancer of lowering LDL cholesterol (LDL-C) with a statin using individual patient records from 175,000 patients in 27 large-scale statin trials. Methods and Findings: Individual records of 134,537 participants in 22 randomised trials of statin versus control (median duration 4.8 years) and 39,612 participants in 5 trials of more intensive versus less intensive statin therapy (median duration 5.1 years) were obtained. Reducing LDL-C with a statin for about 5 years had no effect on newly diagnosed cancer or on death from such cancers in either the trials of statin versus control (cancer incidence: 3755 [1.4% per year [py]] versus 3738 [1.4% py], RR 1.00 [95% CI 0.96-1.05]; cancer mortality: 1365 [0.5% py] versus 1358 [0.5% py], RR 1.00 [95% CI 0.93-1.08]) or in the trials of more versus less statin (cancer incidence: 1466 [1.6% py] vs 1472 [1.6% py], RR 1.00 [95% CI 0.93-1.07]; cancer mortality: 447 [0.5% py] versus 481 [0.5% py], RR 0.93 [95% CI 0.82-1.06]). Moreover, there was no evidence of any effect of reducing LDL-C with statin therapy on cancer incidence or mortality at any of 23 individual categories of sites, with increasing years of treatment, for any individual statin, or in any given subgroup. In particular, among individuals with low baseline LDL-C (<2 mmol/L), there was no evidence that further LDL-C reduction (from about 1.7 to 1.3 mmol/L) increased cancer risk (381 [1.6% py] versus 408 [1.7% py]; RR 0.92 [99% CI 0.76-1.10]). Conclusions: In 27 randomised trials, a median of five years of statin therapy had no effect on the incidence of, or mortality from, any type of cancer (or the aggregate of all cancer).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus [HCV] infects 170 million people worldwide. We investigated interactions between HCV proteins and cellular proteins involved in autophagy and lipid metabolism. We sought to develop an infection model using patient derived human serum containing HCV and human hepatocytes, Huh7 cells. Using the model, we have shown intracellular expression of incoming HCV RNA (5′ UTR region and region spanning the E1/E2 glycoproteins), expression of the HCV proteins, core and NS5B, and a cellular response to HCV infection. These data suggests this model can be used to analyse the early stage of HCV infection. HCV utilises the autophagy pathway to both establish infection and to complete its life cycle. We investigated HCV interaction with the early stage autophagy protein ATG5. We found that although ATG5 mRNA is unchanged in HCV infected cells, protein expression of ATG5 is significantly upregulated. These data indicated HCV controls the post-transcriptional regulation of ATG5. We used the upstream open reading frame (uORF) and the 5′ UTR region of ATG5 to examine the post-transcriptional regulation. Our data suggest HCV RNA replication either directly or indirectly causes post-transcriptional regulation of the early autophagy protein, ATG5 in a 5′ UTR and uORF independent manner. HCV infection leads to an increase in SREBP controlled genes e.g. HMG-CoA Reductase, cholesterol, LDL and fatty acid synthesis. We hypothesised that HCV infection causes the activation of SREBP pathway by interacting directly or indirectly with proteins involved in the initiation of the pathway. We sought to determine if HCV interacts with SCAP or INSIG. We confirmed a change in LD distribution and HMG-CoA reductase activity as a result of HCV RNA replication. Significantly, we show SCAP protein expression was also altered during HCV RNA replication and HCV core protein possibly interacts with SCAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.

METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.

RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.

CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The role of statin therapy in heart failure (HF) is unclear. The amino-terminal propeptide of procollagen type III (PIIINP) predicts outcome in HF, and yet there are conflicting reports of statin therapy effects on PIIINP.

OBJECTIVES: This study determined whether there was an increase in serum markers of inflammation, fibrosis (including PIIINP), and B-type natriuretic peptide (BNP) in patients with systolic HF and normal total cholesterol and determined the effects of long-term treatment with atorvastatin on these markers.

METHODS: Fifty-six white patients with systolic HF and normal cholesterol levels (age 72 [13] years; 68% male; body mass index 27.0 [7.3] kg/m(2); ejection fraction 35 [13]%; 46% with history of smoking) were randomly allocated to atorvastatin treatment for 6 months, titrated to 40 mg/d (A group) or not (C group). Age- and/or sex-matched subjects without HF (N group) were also recruited. Biomarkers were measured at baseline (all groups) and 6 months (A and C groups).

RESULTS: Serum markers of collagen turnover, inflammation, and BNP were significantly elevated in HF patients compared with normal participants (all P < 0.05). There were correlations between these markers in HF patients but not in normal subjects. Atorvastatin treatment for 6 months caused a significant reduction in the following biomarkers compared with baseline: BNP, from median (interquartile range) 268 (190-441) pg/mL to 185 (144-344) pg/mL; high-sensitivity C-reactive protein (hs-CRP), from 5.26 (1.95 -9.29) mg/L to 3.70 (2.34-6.81) mg/L; and PIIINP, from 4.65 (1.86) to 4.09 (1.25) pg/mL (all P < 0.05 baseline vs 6 months). Between-group differences were significant for PIIINP only (P = 0.027). There was a positive interaction between atorvastatin effects and baseline hs-CRP and PIIINP (P < 0.01).

CONCLUSIONS: Long-term statin therapy reduced PIIINP in this small, selected HF population with elevated baseline levels. Further evaluation of statin therapy in the management of HF patients with elevated PIIINP is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine protease inhibitors (serpin) play essential roles in many organisms. Mammalian serpins regulate the blood coagulation, fibrinolysis, inflammation and complement activation pathways. In parasitic helminths, serpins are less well characterized, but may also be involved in evasion of the host immune response. In this study, a Schistosoma japonicum serpin (SjB10), containing a 1212 bp open reading frame (ORF), was cloned, expressed and functionally characterized. Sequence analysis, comparative modelling and structural-based alignment revealed that SjB10 contains the essential structural motifs and consensus secondary structures of inhibitory serpins. Transcriptional profiling demonstrated that SjB10 is expressed in adult males, schistosomula and eggs but particularly in the cercariae, suggesting a possible role in cercarial penetration of mammalian host skin. Recombinant SjB10 (rSjB10) inhibited pancreatic elastase (PE) in a dose-dependent manner. rSjB10 was recognized strongly by experimentally infected rat sera indicating that native SjB10 is released into host tissue and induces an immune response. By immunochemistry, SjB10 localized in the S. japonicum adult foregut and extra-embryonic layer of the egg. This study provides a comprehensive demonstration of sequence and structural-based analysis of a functional S. japonicum serpin. Furthermore, our findings suggest that SjB10 may be associated with important functional roles in S. japonicum particularly in host-parasite interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL)
cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a
lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI
knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased
atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains
unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328
individuals with extremely high plasma HDL-C levels, we identified a homozygote for a lossof-function
variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene
encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and
abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells
derived from induced pluripotent stem cells from the homozygous subject, and in mice.
Large population-based studies revealed that subjects who are heterozygous carriers of
the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have
a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is
statistically significant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 2 July 2009, the EFSA Panel on Dietetic products, Nutrition and Allergies (NDA) endorsed a draft Opinion on Dietary Reference Values for fats to be released for public consultation. This Scientific Report summarises the comments received through the public consultation and outlines how these were taken into account in the final opinion. EFSA had received contributions from 40 interested parties (individuals, non-governmental organisations, industry organisations, academia and national assessment bodies). The main comments which were received during the public consultation related to: the availability of more recent data, the nomenclature used, the use of a non-European food composition data base, the impact of genetic factors in modulating the absorption, metabolism and health effects of different fatty acids, the definition of “nutritionally adequate diet”, the use of Dietary Reference Values in the labelling of foods, the translation of advice into food-based dietary guidelines, nutrient goals and recommendations, certain risk management issues, and to Dietary Reference Values of fats, individual fatty acids, and cholesterol. All the public comments received that related to the remit of EFSA were assessed and the Opinion on Dietary Reference Values for fats has been revised taking relevant comments into consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the correlation between cholesterol levels and the glomerular filtration rate of adult patients in a Portuguese sample.