971 resultados para Intertemporal substitution


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.

In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.

In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.

One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.

The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas stoichiometric activation of C-H bonds by complexes of transition metals is becoming increasingly common, selective functionalization of alkanes remains a formidable challenge in organometallic chemistry. The recent advances in catalytic alkane functionalization by transition-metal complexes are summarized in Chapter I.

The studies of the displacement of pentafluoropyridine in [(tmeda)Pt(CH_3)(NC_5F_5)][BAr^f_4] (1) with γ- tetrafluoropicoline, a very poor nucleophile, are reported in Chapter II. The ligand substitution occurs by a dissociative interchange mechanism. This result implies that dissociative loss of pentafluoropyridine is the rate-limiting step in the C-H activation reactions of 1.

Oxidation of dimethylplatinum(II) complexes (N-N)Pt(CH_3)_2 (N-N = tmeda(1), α-diimines) by dioxygen is described in Chapter III. Mechanistic studies suggest a two-step mechanism. First, a hydroperoxoplatinum(IV) complex is formed in a reaction between (N-N)Pt(CH_3)_2 and dioxygen. Next, the hydroperoxy complex reacts with a second equivalent of (N-N)Pt(CH_3)_2 to afford the final product, (N-N)Pt(OH)(OCH_3)(CH_3)_2. The hydroperoxy intermediate, (tmeda)Pt(OOH)(OCH_3)(CH_3)_2 (2), was isolated and characterized. The reactivity of 2 with several dime thylplatinum(II) complexes is reported.

The studies described in Chapter IV are directed toward the development of a platinum(II)-catalyzed oxidative alkane dehydrogenation. Stoichiometric conversion of alkanes (cyclohexane, ethane) to olefins (cyclohexene, ethylene) is achieved by C-H activation with [(N-N)Pt(CH_3)(CF_3CH_2OH)]BF_4 (1, N-N is N,N'-bis(3,5-di-t- butylphenyl)-1,4-diazabutadiene) which results in the formation of olefin hydride complexes. The first step in the C-H activation reaction is formation of a platinum(II) alkyl which undergoes β-hydrogen elimination to afford the olefin hydride complex. The cationic ethylplatinum(II) intermediate can be generated in situ by treating diethylplatinum(II) compounds with acids. Treatment of (phen)PtEt_2 with [H(OEt_2)_2]Bar^f_4 at low temperatures resulted in the formation of a mixture of [(phen)PtEt(OEt_2)]Bar^f_4 (8) and [(phen)Pt(C_2H_4)H] Bar^f_4 (7). The cationic olefin complexes are unreactive toward dioxygen or hydrogen peroxide. Since the success of the overall catalytic cycle depends on our ability to oxidize the olefin hydride complexes, a series of neutral olefin complexes of platinum(II) with monoanionic ligands (derivatives of pyrrole-2-carboxyaldehyde N-aryl imines) was prepared. Unfortunately, these are also stable to oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumption of addictive substances poses a challenge to economic models of rational, forward-looking agents. This dissertation presents a theoretical and empirical examination of consumption of addictive goods.

The theoretical model draws on evidence from psychology and neurobiology to improve on the standard assumptions used in intertemporal consumption studies. I model agents who may misperceive the severity of the future consequences from consuming addictive substances and allow for an agent's environment to shape her preferences in a systematic way suggested by numerous studies that have found craving to be induced by the presence of environmental cues associated with past substance use. The behavior of agents in this behavioral model of addiction can mimic the pattern of quitting and relapsing that is prevalent among addictive substance users.

Chapter 3 presents an empirical analysis of the Becker and Murphy (1988) model of rational addiction using data on grocery store sales of cigarettes. This essay empirically tests the model's predictions concerning consumption responses to future and past price changes as well as the prediction that the response to an anticipated price change differs from the response to an unanticipated price change. In addition, I consider the consumption effects of three institutional changes that occur during the time period 1996 through 1999.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.

C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.

A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze the metabolism of xenobiotics and the biosynthesis of signaling molecules. Controlled electron flow into the thiolate-ligated heme active site allows P450s to activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive nature and short lifetimes of these intermediates, many of the fundamental steps in catalysis have not been observed directly. The Gray group and others have developed photochemical methods, known as “flash-quench,” for triggering electron transfer (ET) and generating redox intermediates in proteins in the absence of native ET partners. Photo-triggering affords a high degree of temporal precision for the gating of an ET event; the initial ET and subsequent reactions can be monitored on the nanosecond-to-second timescale using transient absorption (TA) spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and mechanism, including the native pathway for formation of compound I, and outlines the development of photochemical processes that can be used to artificially trigger ET in proteins. Chapters 2 and 3 describe the development of these photochemical methods to establish electronic communication between a photosensitizer and the buried P450 heme. Chapter 2 describes the design and characterization of a Ru-P450-BM3 conjugate containing a ruthenium photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second kinetics of the photo-triggered ET event are presented. By analyzing data at multiple wavelengths, we have identified the formation of multiple ET intermediates, including the catalytically relevant compound II; this intermediate is generated by oxidation of a bound water molecule in the ferric resting state enzyme. The work in Chapter 3 probes the role of a tryptophan residue situated between the photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. Replacement of this tryptophan with histidine does not perturb the P450 structure, yet it completely eliminates the ET reactivity described in Chapter 2. The presence of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a basic description of the theoretical underpinnings required to analyze ET. Single-step ET theory is first presented, followed by extensions to multistep ET: electron “hopping.” The generation of “hopping maps” and use of a hopping map program to analyze the rate advantage of hopping over single-step ET is described, beginning with an established rhenium-tryptophan-azurin hopping system. This ET analysis is then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 explores the implementation of flash-quench and other phototriggered methods to examine the native reductive ET and gas binding events that activate molecular oxygen. In particular, TA kinetics that demonstrate heme reduction on the microsecond timescale for four Ru-P450 conjugates are presented. In addition, we implement laser flash-photolysis of P450 ferrous–CO to study the rates of CO rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 describes the development and implementation of air-sensitive potentiometric redox titrations to determine the solution reduction potentials of a series of P450 BM3 mutants, which were designed for non-native cyclopropanation of styrene in vivo. An important conclusion from this work is that substitution of the axial cysteine for serine shifts the wild type reduction potential positive by 130 mV, facilitating reduction by biological redox cofactors in the presence of poorly-bound substrates. While this mutation abolishes oxygenation activity, these mutants are capable of catalyzing the cyclopropanation of styrene, even within the confines of an E. coli cell. Four appendices are also provided, including photochemical heme oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts used for data analysis (Appendix D).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.

In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.

Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.

As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.

Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependences of the reduction potentials (Eo') of wildtype human myoglobin (Mb) and three site-directed mutants have been measured by using thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. At pH 7.0, reduction of the heme iron (III) in the former two proteins is accompanied by uptake of a proton by the protein. The changes in Eo', and the standard entropy (ΔSo') and enthalpy (ΔHo') of reduction in the mutant proteins were determined relative to values for wild-type; the change in Eo' at 25°C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. Reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues, and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.

Through analysis of the temperature dependence and shapes of NMR dispersion signals, it is determined that a water molecule is bound to the sixth coordination site of the ferric heme in the Val68Asp and in the Val68Asn recombinant proteins while the carboxyl group of the sidechain of Glu68 occupies this position in Val68Glu. The relative rhombic distortions in the ESR spectra of these mutant proteins combined with H217O and spin interconversion experiments performed on them confirm the conclusions of the NMRD study.

The rates of intramolecular electron transfer (ET) of (NH3)5Ru-His48 (Val68Asp, His81GIn, Cys110AIa)Mb and (NH3)5Ru-His48 (Val68GIu,His81GIn,Cys110Ala)Mb were measured to be .85(3)s-1 and .30(2)s-1, respectively. This data supports the hypothesis that entropy of 111 reduction and reorganization energy of ET are inversely related. The rates of forward and reverse ET for (NH3)5 Ru-His48 (Val68GIu, His81 GIn, Cys110AIa)ZnMb -7.2(5)•104s-1and 1.4(2)•105s-1, respectively- demonstrate that the placement of a highly polar residue nearby does not significantly change the reorganization energy of the photoactive Zn porphyrin.

The distal histidine imidazoles of (NH3)4isnRu-His48 SWMb and (NH3)5Ru-His48 SWMb were cyanated with BrCN. The intramolecular ET rates of these BrCN-modified Mb derivatives are 5.5(6)s-1 and 3.2(5)s-1, respectively. These respective rates are 20 and 10 times faster than those of their noncyanated counterparts after the differences in ET rate from driving force are scaled according to the Marcus equation. This increase in ET rate of the cyanated Mb derivatives is attributed to lower reorganization energy since the cyanated Mb heme is pentacoordinate in both oxidation states; whereas, the native Mb heme loses a water molecule upon reduction so that it changes from six to five coordinate. The reorganization energy from Fe-OH2 dissociation is estimated to be .2eV. This conclusion is used to reconcile data from previous experiments in our lab. ET in photoactive porphyrin-substituted myoglobins proceed faster than predicted by Marcus Theory when it is assumed that the only difference in ET parameters between photoactive porphyrins and native heme systems is driving force. However, the data can be consistently fit to Marcus Theory if one corrects for the smaller reorganization in the photoactive porphyrin systems since they do not undergo a coordination change upon ET.

Finally, the intramolecular ET rate of (NH3)4isnRu-His48 SWMb was measured to be 3.0(4)s-1. This rate is within experimental error of that for (NH3)4pyrRu-His48 SWMb even though the former has 80mV more driving force. One likely possibility for this observation is that the tetraamminepyridineruthenium group undergoes less reorganization upon ET than the tetraammineisonicotinamideruthenium group. Moreover, analysis of the (NH3)4isnRu-His48 SWMb experimental system gives a likely explanation of why ET was not observed previously in (NH3)4isnRu-Cytochrome C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following work explores the processes individuals utilize when making multi-attribute choices. With the exception of extremely simple or familiar choices, most decisions we face can be classified as multi-attribute choices. In order to evaluate and make choices in such an environment, we must be able to estimate and weight the particular attributes of an option. Hence, better understanding the mechanisms involved in this process is an important step for economists and psychologists. For example, when choosing between two meals that differ in taste and nutrition, what are the mechanisms that allow us to estimate and then weight attributes when constructing value? Furthermore, how can these mechanisms be influenced by variables such as attention or common physiological states, like hunger?

In order to investigate these and similar questions, we use a combination of choice and attentional data, where the attentional data was collected by recording eye movements as individuals made decisions. Chapter 1 designs and tests a neuroeconomic model of multi-attribute choice that makes predictions about choices, response time, and how these variables are correlated with attention. Chapter 2 applies the ideas in this model to intertemporal decision-making, and finds that attention causally affects discount rates. Chapter 3 explores how hunger, a common physiological state, alters the mechanisms we utilize as we make simple decisions about foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.

In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.

An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands.; The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit. (C) 1997 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O óleo extensor normalmente empregado em copolímeros à base de butadieno e estireno ( borracha SBR) da série 1712 é o extrato aromático (DAE). Nesta Dissertação, esse óleo foi substituído por óleos com baixos teores de policíclicos aromáticos em formulações de SBR. Esta substituição se deu em atendimento a Regulamentação REACH (EC No1907/2006 do Parlamento Europeu e do Conselho de 18 de Dezembro de 2006, Anexo XVII) que determina que a soma de hidrocarbonetos policíclicos aromáticos individuais (PAHs) deve ser abaixo de 10 mg/kg e o teor de benzo(a)pireno (BaP) não deve exceder 1 mg/kg. Os óleos empregados foram o extrato aromático residual tratado (TRAE) e dois óleos naftênicos de fornecedores diferentes (HN1 e HN2). As composições de SBR estendidas em DAE, TRAE, HN1 e HN2 tiveram suas propriedades térmicas avaliadas por análise termogravimétrica (TG) e calorimetria diferencial de varredura (DSC). As propriedades físicas foram determinadas por ensaios de tração, dureza, resistência à abrasão e resiliência. Foram ainda avaliadas as propriedades reométricas e reológicas, por viscosidade e relaxação Mooney, respectivamente. Ao final os resultados demonstraram que é possível a substituição do óleo extensor por quaisquer dos óleos testados sem prejuízos nas propriedades estudadas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {(1) over bar, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter. (C) 1999 Optical Society of America.