977 resultados para Interferon-producing Killer Dendritic Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic islands are DNA elements acquired by horizontal gene transfer that are common to a large number of bacterial genomes, which can contribute specific adaptive functions, e.g. virulence, metabolic capacities or antibiotic resistances. Some genomic islands are still self-transferable and display an intricate life-style, reminiscent of both bacteriophages and conjugative plasmids. Here we studied the dynamical process of genomic island excision and intracellular reintegration using the integrative and conjugative element ICEclc from Pseudomonas knackmussii B13 as model. By using self-transfer of ICEclc from strain B13 to Pseudomonas putida and Cupriavidus necator as recipients, we show that ICEclc can target a number of different tRNA(Gly) genes in a bacterial genome, but only those which carry the GCC anticodon. Two conditional traps were designed for ICEclc based on the attR sequence, and we could show that ICEclc will insert with different frequencies in such traps producing brightly fluorescent cells. Starting from clonal primary transconjugants we demonstrate that ICEclc is excising and reintegrating at detectable frequencies, even in the absence of recipient. Recombination site analysis provided evidence to explain the characteristics of a larger number of genomic island insertions observed in a variety of strains, including Bordetella petri, Pseudomonas aeruginosa and Burkholderia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a growing epidemic with devastating human, social and economic impact. It is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent LDL and HDL particles in insulin-secreting β-cells. Purified human VLDL and LDL particles reduced insulin mRNA levels and β-cell proliferation, and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of β-cells involved caspase-3 cleavage and reduction in levels of the c-Jun N-terminal (JNK) Interacting Protein-1 (IB1/JIP-1). In contrast, the pro-apoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of JNK. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of the protein kinase Akt/PKB. Heart disease is a major cause of morbidity and mortality among patients with diabetes. When heart failure is refractory to medical therapy and cannot be improved by electrical resynchronization, percutaneous angioplasty or coronary graft bypass surgery, heart transplantation remains a "last resort" therapy. Nevertheless, it is limited by the side effects of immunosuppressive drugs and chronic rejection. Localized expression of immunomodulatory genes in the donor organ can create a state of immune privilege within the graft, and was performed in rodent hearts by infecting cells with an adenovirus encoding indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophane. Other strategies are based on genetic manipulation of dendritic cells (DCs) with immunosuppressive genes and in vitro exposure of DCs to agents that prevent their maturation by inflammatory cytokines. Finally, we used 5-bromo-2'-deoxyuridine, which is incorporated into DNA and diluted with cell division, to identify long-term label retaining cells in the adult rodent heart. The majority of these cells were positive for the stem cell antigen-1 (Sca-1) and negative for the endothelial precursor marker CD31. They formed cardiospheres in vitro and showed differentiation potential into mesenchymal cell lineages. When cultured in cardiomyogenic differentiation medium, they expressed cardiac-specific genes. Taken together, these data provide evidence of slow-cycling stem cells in the rodent heart. Chronic shortage of donor organs opens the way to cardiac stem cell therapy in humans, although the long way from animal experimentation to routine therapy in patients may still take several years. - Du diabète de type 2 à la maladie coronarienne : trois études sur les dysfonctions de la cellule sécrétrice d'insuline induites par les dyslipidémies, l'immunomodulation dans la transplantation cardiaque, et la thérapie par des cellules souches myocardiques. Le diabète de type 2 a pris les dimensions d'une épidémie, avec des conséquences sociales et économiques dont nous n'avons pas encore pris toute la mesure. La maladie s'accompagne souvent d'une dyslipidémie caractérisée par une hypertriglycéridémie, des taux abaissés de cholestérol HDL, et des concentrations de cholestérol LDL à la limite supérieure de ce qui est considéré comme acceptable. L'hypothèse à la base de cette étude est qu'une modification des taux plasmatiques de lipoprotéines pourrait avoir une influence directe sur la cellule β sécrétrice d'insuline en modifiant sa fonction, sa durée de vie et son taux de régénération. Dans un premier temps, nous avons mis en évidence, sur la cellule β, la présence de plusieurs récepteurs impliqués dans la captation des lipoprotéines. Nous avons confirmé la fonctionnalité de ces récepteurs en suivant l'internalisation de LDL et de HDL marqués. En présence de VLDL ou de LDL humains, nous avons observé une diminution de la transcription du gène de l'insuline, une prolifération cellulaire réduite, et une augmentation de l'apoptose, toutes fonctions de la dose et du temps d'exposition. L'apoptose induite par les VLDL passe par une activation de la caspase-3 et une réduction du taux de la protéine IB1/JIP-1 (Islet Brain1/JNK Interacting Protein 1), dont une mutation est associée à une forme monogénique de diabète de type 2. Par opposition, les HDL, ainsi que des peptides inhibiteurs de JNK, sont capables de contrer la cascade pro-apoptotique déclenchée, respectivement, par les LDL et les VLDL. Ces effets protecteurs comprennent l'inhibition du clivage de la caspase-3 et l'activation de la protéine kinase Akt/PKB. En conclusion, les lipoprotéines sont des éléments clés de la survie de la cellule β, et pourraient contribuer au dysfonctionnement observé dans le pancréas endocrine au cours du développement du diabète. La maladie cardiaque, et plus particulièrement la maladie coronarienne, est une cause majeure de morbidité et de mortalité chez les patients atteints de diabète. Plusieurs stratégies sont utilisées quotidiennement pour pallier les atteintes cardiaques: traitements médicamenteux, électromécaniques par resynchronisation électrique, ou communément appelés « interventionnels » lorsqu'ils font appel à l'angioplastie percutanée. La revascularisation du myocarde par des pontages coronariens donne également de très bons résultats dans certaines situations. Il existe toutefois des cas où plus aucune de ces approches n'est suffisante. La transplantation cardiaque est alors la thérapie de choix pour un nombre restreint de patients. La thérapie génique, en permettant l'expression locale de gènes immunomodulateurs dans l'organe greffé, permet de diminuer les réactions de rejet inhérentes à toute transplantation (à l'exception de celles réalisées entre deux jumeaux homozygotes). Nous avons appliqué chez des rongeurs cette stratégie en infectant le coeur greffé avec un adénovirus codant pour l'enzyme indoleamine 2,3-dioxygénase (IDO), une enzyme clé dans le catabolisme du tryptophane. Nous avons procédé de manière identique in vitro en surexprimant IDO dans les cellules dendritiques, dont le rôle est de présenter les antigènes aux lymphocytes Τ du receveur. Des expériences similaires ont été réalisées en traitant les cellules dendritiques avec des substances capables de prévenir, en partie du moins, leur maturation par des agents pro-inflammatoires. Finalement, nous avons exploré une stratégie utilisée couramment en hématologie, mais qui n'en est encore qu'à ses débuts au niveau cardiaque : la thérapie par des cellules souches. En traitant des rongeurs avec un marqueur qui s'incorpore dans l'ADN nucléaire, le 5-bromo- 2'-deoxyuridine, nous avons identifié une population cellulaire se divisant rarement, positive en grande partie pour l'antigène embryonnaire Sca-1 et négative pour le marqueur endothélial CD31. En culture, ces cellules forment des cardiosphères et sont capables de se différencier dans les principaux types tissulaires mésenchymateux. Dans un milieu de differentiation adéquat, ces cellules expriment des gènes cardiomyocytaires. En résumé, ces données confirment la présence chez le rongeur d'une population résidente de précurseurs myocardiques. En addenda, on trouvera deux publications relatives à la cellule β productrice d'insuline. Le premier article démontre le rôle essentiel joué par la complexine dans l'insulino-sécrétion, tandis que le second souligne l'importance de la protéine IB1/JIP-1 dans la protection contre l'apoptose de la cellule β induite par certaines cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor-infiltrating lymphocytes are present in a variety of tumors and play a central role in antitumor immune responses. Nevertheless, most cancers progress probably because tumors are only weakly immunogenic and develop multiple immunosuppressive mechanisms. In the present study, on head and neck squamous cell carcinoma, we found high intraepithelial infiltration of regulatory FOXP3(+) T cells, and relatively high levels of BDCA2(+) and FOXP3(+) cells in stromal (peripheral) regions of the tumors. Tumor-infiltrating (intraepithelial) FOXP3(+) T cells were significantly more frequent in patients with oropharynx and oral cavity squamous cell carcinoma and in patients without lymph node metastasis. Furthermore, arginase-II (ARG2) was expressed by 60%, inducible nitric oxide synthetase by 9%, cyclooxygenase-2 by 43%, and B-cell lymphoma 2 (BCL2) by 26% of tumors. Interestingly, the absence of ARG2 expression, enhanced stromal infiltration of CD11c(+) myeloid dendritic cells, and high numbers of FOXP3(+) T cells were each significantly associated with prolonged overall survival, and the latter two parameters were also confirmed by multivariate analysis. For disease-free survival, multivariate analysis revealed significant negative correlations with BCL2 and ARG2 expression by tumor cells. These findings shed new light on mechanisms of cancer progression, and provide rationales for therapeutic inhibition of immunosuppressive mechanisms in head and neck squamous cell carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4-8- and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4-8- T cell receptor (TCR) gamma delta cells have little P-gly activity, a minor subset of CD4-8- or CD4+ TCR alpha beta + thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large variety of lymphoma types may develop as primary intestinal neoplasms in the small intestines or, less often, in the colorectum. Among these are a few entities such as enteropathy-associated T-cell lymphoma or immunoproliferative small intestinal disease that, essentially, do not arise elsewhere than in the gastrointestinal tract. In most instances the primary intestinal lymphomas belong to entities that also occur in lymph nodes or other mucosal sites, and may show some peculiar features. In the case of follicular lymphoma, important differences exist between the classical nodal cases and the intestinal cases, considered as a variant of the disease. It is likely that the local intestinal mucosal microenvironment is a determinant in influencing the pathobiological features of the disease. In this review we will present an update on the clinical, pathological and molecular features of the lymphoid neoplasms that most commonly involve the intestines, incorporating recent developments with respect to their pathobiology and classification. We will emphasize and discuss the major differential diagnostic problems encountered in practice, including the benign reactive or atypical lymphoid hyperplasias, indolent lymphoproliferative disorders of T or natural killer (NK) cells, and Epstein-Barr virus (EBV)-related lymphoproliferations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral haemorrhagic fevers (VHF) caused by arenaviruses are among the most devastating emerging human diseases. The most important pathogen among the arenaviruses is Lassa virus (LASV), the causative agent of Lassa fever that is endemic to West Africa. On the South American continent, the New World arenavirus Junin virus (JUNV), Machupo (MACV), Guanarito (GTOV), and Sabia virus (SABV) have emerged as causative agents of severe VHFs. Clinical and experimental studies on arenavirus VHF have revealed a crucial role of the endothelium in their pathogenesis. However, in contrast to other VHFs, haemorrhages are not a salient feature of Lassa fever and fatal cases do not show overt destruction of vascular tissue. The functional alteration of the vascular endothelium that precede shock and death in fatal Lassa fever may be due to more subtle direct or indirect effects of the virus on endothelial cells. Haemorrhagic disease manifestations and vascular involvement are more pronounced in the VHF caused by the South American haemorrhagic fever viruses. Recent studies on JUNV revealed perturbation of specific endothelial cell function, including expression of cell adhesion molecules, coagulation factors, and vasoactive mediators as a consequence of productive viral infection. These studies provided first possible links to some of the vascular abnormalities observed in patients, however, their relevance in vivo remains to be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M-stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center-like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.