946 resultados para Insect digestion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project aims to address the growing need for a coordinated approach to research into the biological control of Australian eucalypt insect pests by scoping the formation of a Centre in Australia which would (a) coordinate the evaluation and provision of biological control agents (initially to South Africa and Brazil, but in future years more widely), (b) research the role natural enemies play in pest population regulation in Australian eucalypt plantations and how this may be enhanced as a management tool, and (c) form a network focussed on forest biosecurity with an emphasis on eucalypt pests and pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-term research projects on insect pest management in processed food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Develop nationally agreed, standard methods for insect sample collection, resistance testing, and data management as a basis for a statistically robust and informative national resistance monitoring program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect pest diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CRC60125 Grain Biosecurity Training Program. Stored grain is subject to major biosecurity problems which have the potential to significantly reduce the quality of the stored grain and to make it unsuitable for both domestic and international markets. The problems include attack by insect pests, rodents, birds and pathogens like fungi, as well as contamination by weed seeds, mycotoxins and pest faeces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosecurity problem addressed was the need to understand and evaluate phosphine fumigation of cool grain (i.e. 20°C or less) as a means of controlling resistant biotypes of insect pests of stored grain which are major EPPs threatening the grain industry. The benefits of cooling and phosphine fumigation are that cooling preserves grain quality and reduces insect population growth, and phosphine kills insects and has a residue free status in all major markets. The research objectives were to: - conduct laboratory experiments on phosphine efficacy against resistant insects in cool grain, and determine times to population extinction. - conduct laboratory experiments on phosphine sorption in cool grain and quantify. - complete fumigation trials in three states (Queensland, WA and NSW) on cool grain stored insealed farm silos. - make recommendations for industry on effective phosphine fumigation of cool grain. Phosphine is used by growers and other stakeholders in the grain industry to meet domesticand international demands for insect-free grain. The project aim was to generate new information on the performance of phosphine fumigation of cool grain relevant to resistant biotypes. Effective control of resistant biotypes using phosphine to fumigate cool grain will benefit growers and other sectors of the grain industry, needing to fumigate grain in the cooler months of the year, or grain that has been cooled using aeration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solenopsis invicta Buren (red imported fire ant) are invasive pests that have the capability of major destructive impacts on lifestyle, ecology and economy. Control of this species is dependent, in part, upon ability to estimate the potential spread from newly discovered nests. The potential for spread and the spread characteristics differ between monogyne and polygyne social forms. Prior to this study, differentiation of the two social forms in laboratory test samples commonly used a method involving restriction endonuclease digestion of an amplified Gp-9 fragment. Success of this assay is limited by the quality of DNA, which in the field-collected insects may be affected by temporary storage in unfavourable conditions. Here, we describe an alternative and highly objective assay based upon a high resolution melt technique following preamplification of a significantly shorter Gp-9 fragment than that required for restriction endonuclease digestion. We demonstrate the application of this assay to a S. invicta incursion in Queensland, Australia, using field samples from which DNA may be partially degraded. The reductions in hands-on requirements and overall duration of the assay underpin its suitability for high-throughput testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extractive components obtained from milling residues of white cypress were studied for chemical identity and bioactivity with a view to developing a commercial use for these components, thus increasing the value of the residues and improving the economics of cypress sawn wood production. Extracts obtained by solvent or steam extraction techniques from cypress sawdust were each fractionated by a range of techniques into groups of similar compounds. Crude extracts and fractions were screened against a range of agricultural pests and diseases, including two fungi, subterranean termites, fruit spotting bugs, two-spotted mites, thrips, heliothis, banana scab moths, silverleaf whiteflies, cattle tick adults and larvae, and ruminant gastrointestinal nematodes. Additional screening was undertaken where encouraging results were achieved, for two-spotted mites, thrips, silverleaf whiteflies, cattle tick adults and ruminant gastrointestinal nematodes. After considering degrees of efficacy against, and economic importance of, the agricultural pests, and likely production costs of extracts and fractions, the crude extract (oil) produced by steam distillation was chosen for further study against silverleaf whitefly. A useful degree of control was achievable when this oil was applied to tomato or eggplant at 0.1%, with much less harmful effects on a beneficial insect. Activity of the oil against silverleaf whitefly was undiminished 3.5 years after it was generated. There was little benefit from supplementing the extract with co-formulated paraffinic oil. From the steam distilled oil, fifty-five compounds were characterised, thirty-five compounds representing 92.478 % of the oil, with guaiol (20.8%) and citronellic acid (15.9%) most abundant. These two compounds, and a group of oxygenated compounds containing bulnesol and a range of eudesmols, were found to account for most of the activity against silverleaf whitefly. This application was recommended for first progression to commercialisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swan’s Lagoon, which is 125 km south-south-west of Townsville, was purchased by the Queensland Government as a beef cattle research station in 1961. It is situated within the seasonally-dry tropical spear grass region of North Queensland. The station was expanded from 80 km2 to 340 km2 by purchase of the adjoining Expedition block in 1978. The first advisory committee formed and initiated research in 1961. The median annual rainfall of 708 mm (28 inches) is highly variable, with over 80% usually falling in December–April. Annual evaporation is 2.03 metres. The 60% of useable area is mostly flat with low fertility duplex soils, of which more than 50% is phosphorus deficient. Natural spear grass-based pastures predominate over the station. Swan’s Lagoon research has contributed to understanding the biology of many aspects of beef production for northern Australia. Research outcomes have provided options to deal with the region’s primary challenges of weaning rates averaging less than 60%, annual growth rates averaging as little as 100 kg, high mortality rates and high management costs. All these relate to the region’s variable and highly seasonal rainfall—challenges that add to insect-borne viruses, ticks, buffalo fly and internal parasites. As well as the vast amount of practical beef production science produced at Swan’s Lagoon, generations of staff have been trained there to support beef producers throughout Queensland and northern Australia to increase their business efficiency. The Queensland Government has provided most of the funds for staffing and operations. Strong beef industry support is reflected in project funding from meat industry levies, managed by Meat and Livestock Australia (MLA) and its predecessors. MLA has consistently provided the majority of operational research funding since the first grant for ‘Studies of management practices, adaption of different breeds and strains to tropical environments, and studies on tick survival and resistance’ in 1962–63. A large number of other agencies and commercial companies have also supported research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential for using imidacloprid (a neonicotinoid) and indoxacarb (an oxadiazine) as grain protectants was investigated in bioassays against resistant strains of five stored grain beetles. The species investigated were Rhyzopertha dominica (F.) (the lesser grain borer), Sitophilus oryzae (L.) (the rice weevil), Tribolium castaneum (Herbst) (the rust-red flour beetle), Oryzaephilus surinamensis (L.) (the saw tooth flour beetle), and Cryptolestes ferrugineus (Stephens) (the flat grain beetle). Each of these species has developed resistance to one or more protectants, including organophosphorus insecticides, synthetic pyrethroids and the juvenile hormone analogue methoprene. Mortality and reproduction after a 2-week exposure of adults to treated wheat depended on species, dose and insecticide. Imidacloprid had no effect on S. oryzae at any dose, but none of the other species produced any live progeny at 10 mg/kg. Indoxacarb had no effect on T. castaneum at any dose, but none of the other species produced any live progeny at 5 mg/kg. The results show that although both imidacloprid and indoxacarb can control at least four of the five key pests tested at doses comparable to those used for organophosphorus protectants, more potent neonicotinoid or oxadiazine insecticides would be needed than either of these to provide broad spectrum protection of stored grain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphine fumigation is commonly used to disinfest grain of insect pests. In fumigations which allow insect survival the question of whether sublethal exposure to phosphine affects reproduction is important for predicting population recovery and the spread of resistance. Two laboratory experiments addressed this question using strongly phosphine resistant lesser grain borer, Rhyzopertha dominica (F.). Offspring production was examined in individual females which had been allowed to mate before being fumigated for 48 h at 0.25 mg L -1. Surviving females produced offspring but at a reduced rate during a two-week period post fumigation compared to unfumigated controls. Cumulative fecundity of fumigated females from 4 weeks of oviposition post fumigation was 25% lower than the cumulative fecundity of unfumigated females. Mating potential post fumigation was examined when virgin adults (either or both sexes) were fumigated individually (48 h at 0.25 mg L -1) and the survivors were allowed to mate and reproduce in wheat. All mating combinations produced offspring but production in the first week post fumigation was significantly suppressed compared to the unfumigated controls. Offspring suppression was greatest when both sexes were exposed to phosphine followed by the pairing of fumigated females with unfumigated males and the least suppression was observed when males only were fumigated. Cumulative fecundity from 4 weeks oviposition post fumigation of fumigated females paired with fumigated males was 17% lower than the fecundity of unfumigated adult pairings. Both of these experiments confirmed that sublethal exposure to phosphine can reduce fecundity in R. dominica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aconophora compressa is a gregarious, sap-sucking insect that uses multiple host plant species. Nymphal host plant species (and variety) significantly affected nymphal survival, nymphal development rate and the subsequent size and fecundity of adults, with fiddlewood ( Citharexylum spinosum ) being significantly best in all respects. Nymphs that developed on a relatively poor host ( Duranta erecta var “geisha girl”) and which were moved to fiddlewood as adults laid significantly fewer eggs (mean ± SE = 836 ± 130) than those that developed solely on fiddlewood (1,329 ± 105). Adults on geisha girl, regardless of having been reared as nymphs on fiddlewood or geisha girl, laid significantly fewer eggs (342 ± 83 and 317 ± 74, respectively) than adults on fiddlewood. A simple model that incorporates host plant related survival, development rate and fecundity suggests that the population dynamics of A. compressa are governed mainly by fiddlewood, the primary host. The results have general implications for understanding the population dynamics of herbivores that use multiple host plant species, and also for the way in which weed biological control host testing methods should be conducted.