999 resultados para Industrial Segmentation
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
Adjustement is an ongoing process by which factors of reallocated to equalize their returns in different uses. Adjustment occurs though market mechanisms or intrafirm reallocation of resources as a result of changes in terms of trade, government policies, resource availability, technological change, etc. These changes alter production opportunities and production, transaction and information costs, and consequently modify production functions, organizational design, etc. In this paper we define adjustment (section 2); review empirical estimates of the extent of adjustment in Canada and abroad (section 3); review selected features of the trade policy and adjustment context of relevance for policy formulation among which: slow growth, a shift to services, a shift to the Pacific Rim, the internationalization of production, investment distribution communications the growing use of NTB's, changes in foreign direct investment patterns, intrafirm and intraindustry trade, interregional trade flows, differences in micro economic adjustment processes of adjustment as between subsidiaries and Canadian companies (section 4); examine methodologies and results of studies of the impact of trade liberalization on jobs (section 5); and review the R. Harris general equilibrium model (section 6). Our conclusion emphasizes the importance of harmonizing commercial and domestic policies dealing with adjustment (section 7). We close with a bibliography of relevant publications.
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.
Resumo:
Tesis (Doctor en Ciencias con Especialidad en Microbiología) U.A.N.L.