982 resultados para In vivo tissue engineering
Resumo:
BACKGROUND: The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS: In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS: This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Resumo:
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.
In vivo effects of a recombinant vaccinia virus expressing a mouse mammary tumor virus superantigen.
Resumo:
Early after infection, the mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) at the surface of B lymphocytes. Interaction with the T-cell receptor Vbeta domain induces a polyclonal proliferative response of the SAg-reactive T cells. Stimulated T cells become anergic and are deleted from the T-cell repertoire. We have used a recombinant vaccinia virus encoding the MMTV(GR) SAg to dissect the effects of the retroviral SAg during an unrelated viral infection. Subcutaneous infection with this recombinant vaccinia virus induces a very rapid increase of Vbeta14 T cells in the draining lymph node. This stimulation does not require a large Plumber of infectious particles and is not strictly dependent on the expression of the major histocompatibility complex class II I-E molecule, as it is required after MMTV(GR) infection. In contrast to MMTV infection during which B cells are infected, we do not observe any clonal deletion of the reactive T cells following the initial stimulation phase. Our data show that contrary to the case with MMTV, macrophages but not B cells are the targets of infection by vaccinia virus in the lymph node, indicating the ability of these cells to present a retroviral SAg. The altered SAg expression in a different target cell observed during recombinant vaccinia virus infection therefore results in significant changes in the SAg response.
Resumo:
OBJECT: To determine whether glycine can be measured at 7 T in human brain with (1)H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS: The glycine singlet is overlapped by the larger signal of myo-inositol. Density matrix simulations were performed to determine the TE at which the myo-inositol signal was reduced the most, following a single spin-echo excitation. (1)H MRS was performed on an actively shielded 7 T scanner, in five healthy volunteers. RESULTS: At the TE of 30 ms, the myo-inositol signal intensity was substantially reduced. Quantification using LCModel yielded a glycine-to-creatine ratio of 0.14 +/- 0.01, with a Cramer-Rao lower bound (CRLB) of 7 +/- 1%. Furthermore, quantification of metabolites other than glycine was possible as well, with a CRLB mostly below 10%. CONCLUSION: It is possible to detect glycine at 7 T in human brain, at the short TE of 30 ms with a single spin-echo excitation scheme.
Resumo:
The objective of phase one of this research was to assess the degree to which currently employed Iowa Department of Transportation (DOT) employees would be affected by a more aggressive policy to recruit and retain women and minority engineers. The DOT's "Future Agenda" was used as a baseline to focus on efforts to update and implement a recruitment plan that would target underrepresented classes. The primary question that emerged out of phase one was how could the Iowa DOT strengthen its ties with Iowa State University (ISU) to produce increased numbers of in-state applicants for engineering positions. This introduced the objective of phase two, which was to identify problem areas resulting in unacceptably high attrition rates for women, minorities, and to a lesser degree, Caucasian men in the College of Engineering at ISU, particularly Civil and Construction Engineering (CCE). Past research has focused on (1) projected shortages of qualified civil engineers, (2) the obstacles confronting women in a traditionally male-oriented profession, and (3) minorities who are often unprepared to succeed in the rigors of an engineering curriculum because of a lack of academic preparedness. The researchers in this study, in contrast, chose to emphasize institutional reasons why women, minorities, and some Caucasian men often feel a sense of isolation in the engineering program. It was found that one of the key obstacles to student retention is the lack of visibility of the civil engineering profession. The visibility problem led to the hypothesis that many engineering students do not have a clear conception of what the practice of civil engineering entails. It was found that this may be a better predictor of attrition than the stereotypical assumption that a majority of students leave their engineering programs because they are not academically able to compete. Recommendations are offered to strengthen the ties between ISU's Department of CCE and the Iowa DOT in order to counter the visibility issue. It was concluded that this is a vital step because over the next 5-15 years 40% of DOT engineers currently employed will be phasing into retirement. If the DOT expects to draw sufficient numbers of engineers from within the state of Iowa and if increasing numbers of them are to be women and minorities, a university connection will help to produce the qualified applicants to fulfill this need.
Resumo:
The detection of BK polyomavirus (BK virus, BKV) in kidney tissue is hampered by nonspecificity of antibodies suited to immunohistochemistry, and nonspecific background with in situ hybridization. The biotin-labeled DNA probe that is commercially available (Enzo Life Sciences, Inc.) shows good signal, but the intrinsic background in kidney tissue is high. We determined that the intrinsic background is due to endogenous biotin or biotin-binding activity in the renal tubular epithelium. Neither antibody blocking procedures nor an avidin/biotin block were entirely satisfactory for eliminating this background staining. We developed a digoxigenin-labeled DNA probe, and protocol, for detecting BK virus in formalin-fixed, paraffin embedded, kidney tissue obtained at autopsy. The hybridization signal is strong and there is no perceptible background staining. Eleven negative control kidneys all failed to hybridize. Conditions for low stringency hybridization may be employed, detecting both the related JC polyomavirus and BKV. Alternatively, high stringency hybridization conditions may be utilized, detecting BKV only. BK associated tubular necrosis is clearly demonstrated in two cases of BK nephritis.
Resumo:
The present study evaluated the potential of using the phase of T2* weighted MR images to characterize myelination during brain development and pathology in rodents at 9.4 T. Phase contrast correlated with myelin content assessed by histology and suggests that most contrast between white and cortical gray matter is modulated by myelin. Ex vivo experiments showed that gray-white matter phase contrast remains unchanged after iron extraction. In dysmyelinated shiverer mice, phase imaging correlated strongly with myelin staining, showing reduced contrast between white and gray matter when compared to healthy controls. We conclude that high-resolution phase images, acquired at high field, allow assessment of myelination and dysmyelination.
Resumo:
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Resumo:
Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.
Resumo:
Proton NMR spectroscopy is emerging from translational and preclinical neuroscience research as an important tool for evidence based diagnosis and therapy monitoring. It provides biomarkers that offer fingerprints of neurological disorders even in cases where a lesion is not yet observed in MR images. The collection of molecules used as cerebral biomarkers that are detectable by (1)H NMR spectroscopy define the so-called "neurochemical profile". The non-invasive quality of this technique makes it suitable not only for diagnostic purposes but also for therapy monitoring paralleling an eventual neuroprotection. The application of (1)H NMR spectroscopy in basic and translational neuroscience research is discussed here.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
Glutamine has multiple roles in brain metabolism and its concentration can be altered in various pathological conditions. An accurate knowledge of its concentration is therefore highly desirable to monitor and study several brain disorders in vivo. However, in recent years, several MRS studies have reported conflicting glutamine concentrations in the human brain. A recent hypothesis for explaining these discrepancies is that a short T2 component of the glutamine signal may impact on its quantification at long echo times. The present study therefore aimed to investigate the impact of acquisition parameters on the quantified glutamine concentration using two different acquisition techniques, SPECIAL at ultra-short echo time and MEGA-SPECIAL at moderate echo time. For this purpose, MEGA-SPECIAL was optimized for the first time for glutamine detection. Based on the very good agreement of the glutamine concentration obtained between the two measurements, it was concluded that no impact of a short T2 component of the glutamine signal was detected.