932 resultados para Imputation model approach
Resumo:
The influence of the architecture of the Byzantine capital spread to the Mediterranean provinces with travelling masters and architects. In this study the architecture of the Constantinopolitan School has been detected on the basis of the typology of churches, completed by certain morphological aspects when necessary. The impact of the Constantinopolitan workshops appears to have been more important than previously realized. This research revealed that the Constantinopolitan composite domed inscribed-cross type or cross-in-square spread everywhere to the Balkans and it was assumed soon by the local schools of architecture. In addition, two novel variants were invented on the basis of this model: the semi-composite type and the so-called Athonite type. In the latter variant lateral conches, choroi, were added for liturgical reasons. Instead, the origin of the domed ambulatory church was partly provincial. One result of this study is that the origin of the Middle Byzantine domed octagonal types was traced to Constantinople. This is attested on the basis of the archaeological evidence. Also some other architectural elements that have not been preserved in the destroyed capital have survived at the provincial level: the domed hexagonal type, the multi-domed superstructure, the pseudo-octagon and the narthex known as the lite. The Constantinopolitan architecture during the period in question was based on the Early Christian and Late Antique forms, practices and innovations and this also emerges at the provincial level.
Resumo:
The purpose of this study is to analyze and develop various forms of abduction as a means of conceptualizing processes of discovery. Abduction was originally presented by Charles S. Peirce (1839-1914) as a "weak", third main mode of inference -- besides deduction and induction -- one which, he proposed, is closely related to many kinds of cognitive processes, such as instincts, perception, practices and mediated activity in general. Both abduction and discovery are controversial issues in philosophy of science. It is often claimed that discovery cannot be a proper subject area for conceptual analysis and, accordingly, abduction cannot serve as a "logic of discovery". I argue, however, that abduction gives essential means for understanding processes of discovery although it cannot give rise to a manual or algorithm for making discoveries. In the first part of the study, I briefly present how the main trend in philosophy of science has, for a long time, been critical towards a systematic account of discovery. Various models have, however, been suggested. I outline a short history of abduction; first Peirce's evolving forms of his theory, and then later developments. Although abduction has not been a major area of research until quite recently, I review some critiques of it and look at the ways it has been analyzed, developed and used in various fields of research. Peirce's own writings and later developments, I argue, leave room for various subsequent interpretations of abduction. The second part of the study consists of six research articles. First I treat "classical" arguments against abduction as a logic of discovery. I show that by developing strategic aspects of abductive inference these arguments can be countered. Nowadays the term 'abduction' is often used as a synonym for the Inference to the Best Explanation (IBE) model. I argue, however, that it is useful to distinguish between IBE ("Harmanian abduction") and "Hansonian abduction"; the latter concentrating on analyzing processes of discovery. The distinctions between loveliness and likeliness, and between potential and actual explanations are more fruitful within Hansonian abduction. I clarify the nature of abduction by using Peirce's distinction between three areas of "semeiotic": grammar, critic, and methodeutic. Grammar (emphasizing "Firstnesses" and iconicity) and methodeutic (i.e., a processual approach) especially, give new means for understanding abduction. Peirce himself held a controversial view that new abductive ideas are products of an instinct and an inference at the same time. I maintain that it is beneficial to make a clear distinction between abductive inference and abductive instinct, on the basis of which both can be developed further. Besides these, I analyze abduction as a part of distributed cognition which emphasizes a long-term interaction with the material, social and cultural environment as a source for abductive ideas. This approach suggests a "trialogical" model in which inquirers are fundamentally connected both to other inquirers and to the objects of inquiry. As for the classical Meno paradox about discovery, I show that abduction provides more than one answer. As my main example of abductive methodology, I analyze the process of Ignaz Semmelweis' research on childbed fever. A central basis for abduction is the claim that discovery is not a sequence of events governed only by processes of chance. Abduction treats those processes which both constrain and instigate the search for new ideas; starting from the use of clues as a starting point for discovery, but continuing in considerations like elegance and 'loveliness'. The study then continues a Peircean-Hansonian research programme by developing abduction as a way of analyzing processes of discovery.
Resumo:
A new structured model-following adaptive approach is presented in this paper to achieve large attitude maneuvers of rigid bodies. First, a nominal controller is designed using the dynamic inversion philosophy. Next, a neuro- adaptive design is proposed to augment the nominal design in order to assure robust performance in the presence of parameter inaccuracies as well as unknown constant external disturbances. The structured approach proposed in this paper (where kinematic and dynamic equations are handled separately), reduces the complexity of the controller structure. From simulation studies, this adaptive controller is found to be very effective in assuring robust performance.
Resumo:
Statistical analyses of health program participation seek to address a number of objectives compatible with the evaluation of demand for current resources. In this spirit, a spatial hierarchical model is developed for disentangling patterns in participation at the small area level, as a function of population-based demand and additional variation. For the former, a constrained gravity model is proposed to quantify factors associated with spatial choice and account for competition effects, for programs delivered by multiple clinics. The implications of gravity model misspecification within a mixed effects framework are also explored. The proposed model is applied to participation data from a no-fee mammography program in Brisbane, Australia. Attention is paid to the interpretation of various model outputs and their relevance for public health policy.
Resumo:
This paper reports on the fourth stage of an evolving study to develop a systems model for embedding education for sustainability (EfS) into pre-service teacher education. The fourth stage trialled the extension of the model to a comprehensive state-wide systems approach involving representatives from all eight Queensland teacher education institutions and other key policy agencies and professional associations. Support for trialling the model included regular meetings among the participating representatives and an implementation guide. This paper describes the first three stages of developing and trialling the model before presenting the case study and action research methods employed, four key lessons learned from the project, and the implications of the major outcomes for teacher education policies and practices. The Queensland-wide multi-site case study revealed processes and strategies that can enable institutional change agents to engage productively in building capacity for embedding EfS at the individual, institutional and state levels in pre-service teacher education. Collectively, the project components provide a system-wide framework that offers strategies, examples, insights and resources that can serve as a model for other states and/or territories wishing to implement EfS in a systematic and coherent fashion.
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
Physical activity is well recognised as a means to reduce cancer risk; however, outdoor activity can increase sun exposure and consequential skin cancer risk. It is proposed, one of the key potential solutions to promote active lifestyles whilst enhancing protection against skin cancer is design resolution for active apparel that considers Australia’s sub-tropical climate whilst maintaining comfort, aesthetic appeal and performance. Using a design thinking approach, facilitated through collaboration between an NGO and a university, student designers were tasked with developing apparel prototypes to explore this challenge. Through practical ideation of problems, potential design solutions were developed within a modest NGO budget and adherence to specific brand guidelines. This project is novel as it demonstrates a low cost yet effective way of collaboratively creating a product to meet multiple needs, rather than reactively assessing already manufactured sun protection products for endorsement. It is a nimble and unique stepping stone in integrating sun safety considerations into clothing that is appealing to the population and creating cross-industry understandings of how design can better contribute to human health and wellbeing. Outcomes to be shared include empirical insights for updating sun safe clothing guidelines, issues around the aesthetic nature of sun safe apparel, and the role of design education for sun safety.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
The preferred conformations of β-phenylpropionyl-Image -phenylalanine (β-PPP) and N-carbobenzoxy-L-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.