960 resultados para Implicit arguments


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The evidence base for the impact of social determinants of health has been strengthened considerably in the last decade. Increasingly, the public health field is using this as a foundation for arguments and actions to change government policies. The Health in All Policies (HiAP) approach, alongside recommendations from the 2010 Marmot Review into health inequalities in the UK (which we refer to as the ‘Fairness Agenda’), go beyond advocating for the redesign of individual policies, to shaping the government structures and processes that facilitate the implementation of these policies. In doing so, public health is drawing on recent trends in public policy towards ‘joined up government’, where greater integration is sought between government departments, agencies and actors outside of government. Methods In this paper we provide a meta-synthesis of the empirical public policy research into joined up government, drawing out characteristics associated with successful joined up initiatives. We use this thematic synthesis as a basis for comparing and contrasting emerging public health interventions concerned with joined-up action across government. Results We find that HiAP and the Fairness Agenda exhibit some of the characteristics associated with successful joined up initiatives, however they also utilise ‘change instruments’ that have been found to be ineffective. Moreover, we find that – like many joined up initiatives – there is room for improvement in the alignment between the goals of the interventions and their design. Conclusion Drawing on public policy studies, we recommend a number of strategies to increase the efficacy of current interventions. More broadly, we argue that up-stream interventions need to be ‘fit-for-purpose’, and cannot be easily replicated from one context to the next.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we provide estimates for the coverage of parameter space when using Latin Hypercube Sampling, which forms the basis of building so-called populations of models. The estimates are obtained using combinatorial counting arguments to determine how many trials, k, are needed in order to obtain specified parameter space coverage for a given value of the discretisation size n. In the case of two dimensions, we show that if the ratio (Ø) of trials to discretisation size is greater than 1, then as n becomes moderately large the fractional coverage behaves as 1-exp-ø. We compare these estimates with simulation results obtained from an implementation of Latin Hypercube Sampling using MATLAB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To determine neuroretinal function with multifocal electroretinogram (mfERG) in diabetic subjects without retinopathy. Methods Multifocal electroretinogram (mfERG) was performed in 18 eyes of 18 diabetic subjects without retinopathy and 17 eyes of 17 age and gender-matched healthy control participants. Among 18 diabetic subjects, two had type 1 and 16 had type 2 diabetes. MfERG responses were averaged by the retinal areas of six concentric rings and four quadrants, and 103 retinal locations; N1–P1 amplitude and P1-implicit time were analysed. Results Average mfERG N1–P1 amplitude (in nv/deg2) of 103 retinal locations was 56.3 ± 17.2 (mean ± SD) in type 1 diabetic subjects, 47.2 ± 9.3 in type 2 diabetic subjects and 71.5 ± 12.7 in controls. Average P1-implicit time (in ms) was 43.0 ± 1.3 in type 1 diabetic subjects, 43.9 ± 2.3 in type 2 diabetic subjects and 41.9 ± 2.1 in controls. There was significant reduction in average N1–P1 amplitude and delay in P1-implicit time in type 2 diabetic subjects in comparison to controls. mfERG amplitude did not show any significant correlation with diabetes duration and blood sugar level. However, implicit time showed a positive correlation with diabetes duration in type 2 diabetic subjects with diabetes duration ≥5 years. Conclusions This is the first study in a Nepalese population with diabetes using multifocal electroretinography. We present novel findings that mfERG N1–P1 amplitude is markedly reduced along with delay in P1-implicit time in type 2 diabetic subjects without retinopathy. These findings indicate that there might be significant dysfunction of inner retina before the development of diabetic retinopathy in the study population, which have higher prevalence of diabetes than the global estimate and uncontrolled blood sugar level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed convection laminar two-dimensional boundary-layer flow of non-Newtonian pseudo-plastic fluids is investigated from a horizontal circular cylinder with uniform surface heat flux using a modified power-law viscosity model, that contains no unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are introduced into boundary-layer formulations for such fluids. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning fluids in terms of the fluid temperature distributions, rate of heat transfer in terms of the local Nusselt number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that different arguments appeal to different people. We all process information in ways that are adapted to be consistent with our underlying ideologies. These ideologies can sometimes be framed in terms of particular axes or dimensions, which makes it possible to represent some aspects of an ideology as a region in the kind of vector space that is typical of many generalised quantum models. Such models can then be used to explain and predict, in broad strokes, whether a particular argument or proposal is likely to appeal to an individual with a particular ideology. The choice of suitable arguments to bring about desired actions is traditionally part of the art or science of rhetoric, and today's highly polarised society means that this skill is becoming more important than ever. This paper presents a basic model for understanding how different goals will appeal to people with different ideologies, and thus how different rhetorical positions can be adopted to promote the same desired outcome. As an example, we consider different narratives and hence actions with respect to the environment and climate change, an important but currently highly controversial topic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metacognitive skills are considered to be essential for graduates from higher education institutions. In teaching spatial design, a fundamental aspect of student learning is the ability to ‘frame’ problems, generate solutions and explore possibilities of different solutions. This article proposes an innovative approach to design education through the implementation of strategies into the design process. The externalisation of implicit and tacit learning through metacognition connects theoretical concepts to interior design process and practice, as well as allowing students to engage and critically analyse issues surrounding theory and practice, thus equipping them with the skills as future design professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady free convection boundary-layer flow in the forward stagnation-point region of a sphere, which is rotating with time-dependent angular velocity in an ambient fluid, has been studied. Both constant wall temperature and constant hear flux conditions have been considered. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The skin friction and the heat transfer are enhanced by the buoyancy force. The effect of the buoyancy force is found to be more pronounced for smaller Prandtl numbers than for larger Prandtl numbers. For a given buoyancy force, the heat transfer increases with an increase in Prandtl number, but the skin friction decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematician tends to have an intense relationship with treatises – one which is more akin to that of a historian than that of her colleagues in the ‘hard’ sciences. A book may be a century or two old and still be relevant as a source of information or inspiration, well-thumbed textbooks from youth might be still consulted decades later, and fierce arguments rage about relative merits of different treatments of the same subject. And much like any book-lover, a mathematician is forever arguing with herself whether she can afford to buy this volume or the other. When the price label is in dollars or euros and the salary paid in rupees, this last dilemma is particularly acute.