974 resultados para Illinois. Dept. of Energy and Natural Resources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good morning! On behalf of the Institute of Agriculture and Natural Resources representatives here this morning, I want to express our very real pleasure in being with you, and our very great appreciation of all that you do. We in the Institute value the Agriculture Builders of Nebraska highly. Your support for our work and the wise counsel of ABN members has been invaluable to me personally since my arrival in Nebraska, and I know that is true of the entire Institute, as well. In fact, the thoughtful perspective and the confidential advice of the ABN Executive Committee in the recent third-round of budget cutting decisions we faced in the Institute helped me work through what we had to do in that very, very difficult round of cuts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good morning, Chairman Wehrbein and members of the Appropriations Committee. I am John Owens, and I serve as Vice - President and Vice Chancellor of the Institute of Agriculture and Natural Resources at the University of Nebraska. Thank you for allowing me the opportunity to speak with you regarding Legislative Resolution 141 on the Nebraska Forest Service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It's a great pleasure to welcome you to this very first recognition ceremony for the Omtvedt Innovation Awards. We are present here to honor innovation strengths of the Institute of Agriculture and Natural Resources, and certainly the four faculty members receiving today's awards are greatly deserving of this recognition. Just hearing about their work is gratifying!

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good afternoon Senator Wehrbein and members of the Appropriations Committee. I am John Owens, and I am University of Nebraska Vice President for Agriculture and Natural Resources, and Harlan Vice Chancellor of the Institute of Agriculture and Natural Resources at the University of Nebraska- Lincoln. I am here to speak with you about the impact of further budget cuts to the Nebraska College of Technical Agriculture - NCTA - at Curtis, Nebraska.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thank you for inviting me to be here today. I truly appreciate this opportunity to visit with you. I've been asked to tell you about some of the recent successes of the Institute of Agriculture and Natural Resources, to talk about opportunities for the Institute in Nebraska's future, and to talk, also, about extension's role in that.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Those of us in the Institute of Agriculture and Natural Resources at your land-grant university view ourselves as partners with Nebraska. Taking the resources of this great university to the citizens of our state is a mission we take very, very seriously. We work hard to apply the university's resources in a diverse number of ways to benefit Nebraska. Today it is my very great pleasure to have this opportunity to provide a brief report to you, our partners, on some of the ways we are returning your investment in us to benefit our state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It's such a pleasure to be here with you this morning. Each year I look forward to this opportunity to visit with you, to hear your thoughts, to thank you for all you do for the Institute of Agriculture and Natural Resources, and for the University of Nebraska. We truly appreciate your support and your hard work on our behalf. I think Nebraska is extremely fortunate to have ABN at work in our state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let me start today by saying thank you. Thank you, each of you, for your strong support of the Institute of Agriculture and Natural Resources and the University of Nebraska.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good afternoon, everyone, and welcome to this 11th annual Nebraska Winery and Grape Growers Forum and Trade Show. I'm John Owens, University of Nebraska Vice President and Harlan Vice Chancellor of the Institute of Agriculture and Natural Resources. I'm delighted to be with you on this second day of a very fine and informative conference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It's a pleasure to have this opportunity to speak with you about the University’s four strategically placed Research and Extension Centers and their associated extension districts, all part of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años, debido a la creciente preocupación por el calentamiento global y el cambio climático, uno de los retos más importantes a los que se enfrenta nuestra sociedad es el uso eficiente y económico de energía así como la necesidad correspondiente de reducir los gases de efecto invernadero (GEI). Las tecnologías de mezclas semicalientes se han convertido en un nuevo e importante tema de investigación en el campo de los materiales para pavimentos ya que ofrece una solución potencial para la reducción del consumo energético y las emisiones de GEI durante la producción y puesta en obra de las mezclas bituminosas. Por otro lado, los pavimentos que contienen polvo de caucho procedente de neumático fuera de uso, al hacer uso productos de desecho, ahorran energía y recursos naturales. Estos pavimentos ofrecen una resistencia mejorada a la formación de roderas, a la fatiga y a la fisuración térmica, reducen los costes de mantenimiento y el ruido del tráfico así como prolongan la vida útil del pavimento. Sin embargo, estas mezclas presentan un importante inconveniente: la temperatura de fabricación se debe aumentar en comparación con las mezclas asfálticas convencionales, ya que la incorporación de caucho aumenta la viscosidad del ligante y, por lo tanto, se producen mayores cantidades de emisiones de GEI. En la presente Tesis, la tecnología de mezclas semicalientes con aditivos orgánicos (Sasobit, Asphaltan A, Asphaltan B, Licomont) se incorporó a la de betunes de alta viscosidad modificados con caucho (15% y 20% de caucho) con la finalidad de dar una solución a los inconvenientes de mezclas con caucho gracias a la utilización de aditivos reductores de la viscosidad. Para este fin, se estudió si sería posible obtener una producción más sostenible de mezclas con betunes de alto contenido en caucho sin afectar significativamente su nivel de rendimiento mecánico. La metodología aplicada para evaluar y comparar las características de las mezclas consistió en la realización de una serie de ensayos de laboratorio para betunes y mezclas con caucho y con aditivos de mezclas semicalientes y de un análisis del ciclo de vida híbrido de la producción de mezclas semicalientes teniendo en cuenta la papel del aditivo en la cadena de suministro con el fin de cuantificar con precisión los beneficios de esta tecnología. Los resultados del estudio indicaron que la incorporación de los aditivos permite reducir la viscosidad de los ligantes y, en consecuencia, las temperaturas de producción y de compactación de las mezclas. Por otro lado, aunque la adición de caucho mejoró significativamente el comportamiento mecánico de los ligantes a baja temperatura reduciendo la susceptibilidad al fenómeno de fisuración térmica, la adición de las ceras aumentó ligeramente la rigidez. Los resultados del estudio reológico mostraron que la adición de porcentajes crecientes de caucho mejoraban la resistencia del pavimento con respecto a la resistencia a la deformación permanente a altas temperaturas y a la fisuración térmica a bajas temperaturas. Además, se observó que los aditivos mejoran la resistencia a roderas y la elasticidad del pavimento al aumentar el módulo complejo a altas temperaturas y al disminuir del ángulo de fase. Por otra parte, el estudio reológico confirmó que los aditivos estudiados aumentan ligeramente la rigidez a bajas temperaturas. Los ensayos de fluencia llevados a cabo con el reómetro demostraron una vez más la mejora en la elasticidad y en la resistencia a la deformación permanente dada por la adición de las ceras. El estudio de mezclas con caucho y aditivos de mezclas semicalientes llevado a cabo demostró que las temperaturas de producción/compactación se pueden disminuir, que las mezclas no experimentarían escurrimiento, que los aditivos no cambian significativamente la resistencia conservada y que cumplen la sensibilidad al agua exigida. Además, los aditivos aumentaron el módulo de rigidez en algunos casos y mejoraron significativamente la resistencia a la deformación permanente. Asimismo, a excepción de uno de los aditivos, las mezclas con ceras tenían la misma o mayor resistencia a la fatiga en comparación con la mezcla control. Los resultados del análisis de ciclo de vida híbrido mostraron que la tecnología de mezclas semicalientes es capaz de ahorrar significativamente energía y reducir las emisiones de GEI, hasta un 18% y 20% respectivamente, en comparación con las mezclas de control. Sin embargo, en algunos de los casos estudiados, debido a la presencia de la cera, la temperatura de fabricación debe reducirse en un promedio de 8 ºC antes de que los beneficios de la reducción de emisiones y el consumo de combustible puedan ser obtenidos. Los principales sectores contribuyentes a los impactos ambientales generados en la fabricación de mezclas semicalientes fueron el sector de los combustibles, el de la minería y el de la construcción. Due to growing concerns over global warming and climate change in recent years, one of the most important challenges facing our society is the efficient and economic use of energy, and with it, the corresponding need to reduce greenhouse gas (GHG) emissions. The Warm Mix Asphalt (WMA) technology has become an important new research topic in the field of pavement materials as it offers a potential solution for the reduction of energy consumption and GHG emissions during the production and placement of asphalt mixtures. On the other hand, pavements containing crumb-rubber modified (CRM) binders save energy and natural resources by making use of waste products. These pavements offer an improved resistance to rutting, fatigue and thermal cracking; reduce traffic noise and maintenance costs and prolong pavement life. These mixtures, however, present one major drawback: the manufacturing temperature is higher compared to conventional asphalt mixtures as the rubber lends greater viscosity to the binder and, therefore, larger amounts of GHG emissions are produced. In this dissertation the WMA technology with organic additives (Sasobit, Asphaltan A, Asphaltan B and Licomont) was applied to CRM binders (15% and 20% of rubber) in order to offer a solution to the drawbacks of asphalt rubber (AR) mixtures thanks to the use of fluidifying additives. For this purpose, this study sought to determine if a more sustainable production of AR mixtures could be obtained without significantly affecting their level of mechanical performance. The methodology applied in order to evaluate and compare the performance of the mixtures consisted of carrying out several laboratory tests for the CRM binders and AR mixtures with WMA additives (AR-WMA mixtures) and a hybrid input-output-based life cycle assessment (hLCA) of the production of WMA. The results of the study indicated that the incorporation of the organic additives were able to reduce the viscosity of the binders and, consequently, the production and compaction temperatures. On the other hand, although the addition of rubber significantly improved the mechanical behaviour of the binders at low temperatures reducing the susceptibility to thermal cracking phenomena, the addition of the waxes slightly increased the stiffness. Master curves showed that the addition of increasing percentages of rubber improved the resistance of the pavement regarding both resistance to permanent deformation at high temperatures and thermal cracking at low temperatures. In addition, the waxes improved the rutting resistance and the elasticity as they increased the complex modulus at high temperatures and decreased the phase angle. Moreover, master curves also attest that the WMA additives studied increase the stiffness at low temperatures. The creep tests carried out proved once again the improvement in the elasticity and in the resistance to permanent deformation given by the addition of the waxes. The AR-WMA mixtures studied have shown that the production/compaction temperatures can be decreased, that the mixtures would not experience binder drainage, that the additives did not significantly change the retained resistance and fulfilled the water sensitivity required. Furthermore, the additives increased the stiffness modulus in some cases and significantly improved the permanent deformation resistance. Except for one of the additives, the waxes had the same or higher fatigue resistance compared to the control mixture. The results of the hLCA demonstrated that the WMA technology is able to significantly save energy and reduce GHG emissions, up to 18% and 20%, respectively, compared to the control mixtures. However, in some of the case studies, due to the presence of wax, the manufacturing temperature at the asphalt plant must be reduced by an average of 8ºC before the benefits of reduced emissions and fuel usage can be obtained. The results regarding the overall impacts generated using a detailed production layer decomposition indicated that fuel, mining and construction sectors are the main contributors to the environmental impacts of manufacturing WMA mixtures.