883 resultados para Identification (control systems)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There were many similarities between the February 1986 storm and that of December 1964 and also December 1955. The 1964 storm hit hardest a little further north and the North Coast took the brunt of that storm. December 1955 also produced higher north coastal area runoff. December 1955 produced greater peaks in the central part of the state than the 1964 flood and is perhaps more comparable south of the Lake Tahoe-American River area. But the real surprise this time was the volume. Four reservoirs, Folsom, Black Butte, Pardee, and Comanche, were filled completely and became surcharged (storing more water than the designed capacity). The 10 day total rainfall amounted to half the normal annual totals at many precipitation stations. The February 1986 flood is a vivid reminder of the extremes of California climate and the value of the extensive system of flood control works in the state. Before the storm, especially in January, there was much concern about the dryness of the water year. Then with the deluge, California's flood control systems were tested. By and large the system worked preventing untold damage and misery for most dwellers in the flat lands.
Resumo:
CLADP is an engineering software program developed at Cambridge University for the interactive computer aided design of feedback control systems. CLADP contains a wide range of tools for the analysis of complex systems, and the assessment of their performance when feedback control is applied, thus enabling control systems to be designed to meet difficult performance objectives. The range of tools within CLADP include the latest techniques in the field whose central theme is the extension of classical frequency domain concepts (well known and well proven for single loop systems) to multivariable or multiloop systems, and by making extensive use of graphical presentation information is provided in a readily understood form.
Resumo:
An interactive software facility for designing multivariable control systems is described. The paper discusses the desirable characteristics of such a facility, the particular capabilities of CLADP and the numerical algorithms which lie behind them.
Resumo:
Several approaches to designing schedule H-infinity control systems are compared. These include a controller switching approach and also parameter scheduling of an observer representation of the controller. They are illustrated by application to a Generic VSTOI. Aircraft Model (GVAM) supplied by The Royal Aerospace Establishment (RAE) at Bedford. The switched design has been tested on the simulator at RAE Bedford. The linear H-infinity designs make use of a loop-shaping followed by robust stabilisation to additive perturbations of a normalised coprime factorisation of the shaped plans. The different scheduling approaches are compared with respect to achieved robust stability levels. performance and complexity of implementation.
Resumo:
Computer Aided Control Engineering involves three parallel streams: Simulation and modelling, Control system design (off-line), and Controller implementation. In industry the bottleneck problem has always been modelling, and this remains the case - that is where control (and other) engineers put most of their technical effort. Although great advances in software tools have been made, the cost of modelling remains very high - too high for some sectors. Object-oriented modelling, enabling truly re-usable models, seems to be the key enabling technology here. Software tools to support control systems design have two aspects to them: aiding and managing the work-flow in particular projects (whether of a single engineer or of a team), and provision of numerical algorithms to support control-theoretic and systems-theoretic analysis and design. The numerical problems associated with linear systems have been largely overcome, so that most problems can be tackled routinely without difficulty - though problems remain with (some) systems of extremely large dimensions. Recent emphasis on control of hybrid and/or constrained systems is leading to the emerging importance of geometric algorithms (ellipsoidal approximation, polytope projection, etc). Constantly increasing computational power is leading to renewed interest in design by optimisation, an example of which is MPC. The explosion of embedded control systems has highlighted the importance of autocode generation, directly from modelling/simulation products to target processors. This is the 'new kid on the block', and again much of the focus of commercial tools is on this part of the control engineer's job. Here the control engineer can no longer ignore computer science (at least, for the time being). © 2006 IEEE.
Resumo:
Computer Aided Control Engineering involves three parallel streams: Simulation and modelling, Control system design (off-line), and Controller implementation. In industry the bottleneck problem has always been modelling, and this remains the case - that is where control (and other) engineers put most of their technical effort. Although great advances in software tools have been made, the cost of modelling remains very high - too high for some sectors. Object-oriented modelling, enabling truly re-usable models, seems to be the key enabling technology here. Software tools to support control systems design have two aspects to them: aiding and managing the work-flow in particular projects (whether of a single engineer or of a team), and provision of numerical algorithms to support control-theoretic and systems-theoretic analysis and design. The numerical problems associated with linear systems have been largely overcome, so that most problems can be tackled routinely without difficulty - though problems remain with (some) systems of extremely large dimensions. Recent emphasis on control of hybrid and/or constrained systems is leading to the emerging importance of geometric algorithms (ellipsoidal approximation, polytope projection, etc). Constantly increasing computational power is leading to renewed interest in design by optimisation, an example of which is MPC. The explosion of embedded control systems has highlighted the importance of autocode generation, directly from modelling/simulation products to target processors. This is the 'new kid on the block', and again much of the focus of commercial tools is on this part of the control engineer's job. Here the control engineer can no longer ignore computer science (at least, for the time being). ©2006 IEEE.
Resumo:
The various aspects of fault-tolerant control systems that have the ability to survive major equipment failures or damages are discussed. Model predictive control (MPC) offers a promising basis for fault-tolerant control. Failures can be dealt with by updating internal models and letting the on-line optimizer control the system in its new condition. Fault detection and isolation (FDI) and the management of complex models are two emerging technologies in this field.
Resumo:
Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Induction Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
This paper addresses the speed and flux regulation of induction motors under the assumption that the motor parameters are poorly known. An adaptive passivity-based control is proposed that guarantees robust regulation as well as accurate estimation of the electrical parameters that govern the motor performance. This paper provides a local stability analysis of the adaptive scheme, which is illustrated by simulations and supported by a successful experimental validation on an industrial product. © 2009 IEEE.
Resumo:
A description of the so called "particles with coupled oscillator dynamics" (PCOD) is presented which is used to model, analyze and synthesize collective motion. An oscillator model with spatial dynamics is presented to help describe how to design steering control laws while it is being used to study biological collectives. Lastly, both engineering and biological analysis were described.
Resumo:
This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified twostage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
This study presents the performance analysis and testing of a 250 kW medium-speed brushless doubly-fed induction generator (DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and showthe system's steady-state and dynamic performance and grid low-voltage ride- through capability. The medium-speed brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drivetrain for wind turbine applications. © The Institution of Engineering and Technology 2013.