1000 resultados para ISSN-tunnus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Balanced nesting is the most usual form of nesting and originates, when used singly or with crossing of such sub-models, orthogonal models. In balanced nesting we are forced to divide repeatedly the plots and we have few degrees of freedom for the first levels. If we apply stair nesting we will have plots all of the same size rendering the designs easier to apply. The stair nested designs are a valid alternative for the balanced nested designs because we can work with fewer observations, the amount of information for the different factors is more evenly distributed and we obtain good results. The inference for models with balanced nesting is already well studied. For models with stair nesting it is easy to carry out inference because it is very similar to that for balanced nesting. Furthermore stair nested designs being unbalanced have an orthogonal structure. Other alternative to the balanced nesting is the staggered nesting that is the most popular unbalanced nested design which also has the advantage of requiring fewer observations. However staggered nested designs are not orthogonal, unlike the stair nested designs. In this work we start with the algebraic structure of the balanced, the stair and the staggered nested designs and we finish with the structure of the cross between balanced and stair nested designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crossed classification models are applied in many investigations taking in consideration the existence of interaction between all factors or, in alternative, excluding all interactions, and in this case only the effects and the error term are considered. In this work we use commutative Jordan algebras in the study of the algebraic structure of these designs and we use them to obtain similar designs where only some of the interactions are considered. We finish presenting the expressions of the variance componentes estimators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we give formulas for the number of elements of the monoids ORm x n of all full transformations on it finite chain with tun elements that preserve it uniform m-partition and preserve or reverse the orientation and for its submonoids ODm x n of all order-preserving or order-reversing elements, OPm x n of all orientation-preserving elements, O-m x n of all order-preserving elements, O-m x n(+) of all extensive order-preserving elements and O-m x n(-) of all co-extensive order-preserving elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that a light charged Higgs boson signal via tau(+/-)nu decay can be established at the Large Hadron Collider (LHC) also in the case of single top production. This process complements searches for the same signal in the case of charged Higgs bosons emerging from t (t) over bar production. The models accessible include the Minimal Supersymmetric Standard Model (MSSM) as well a variety of 2-Higgs Doublet Models (2HDMs). High energies and luminosities are however required, thereby restricting interest on this mode to the case of the LHC running at 14TeV with design configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a 3-D gravity model for the volcanic structure of the island of Maio (Cape Verde archipelago) with the objective of solving some open questions concerning the geometry and depth of the intrusive Central Igneous Complex. A gravity survey was made covering almost the entire surface of the island. The gravity data was inverted through a non-linear 3-D approach which provided a model constructed in a random growth process. The residual Bouguer gravity field shows a single positive anomaly presenting an elliptic shape with a NWSE trending long axis. This Bouguer gravity anomaly is slightly off-centred with the island but its outline is concordant with the surface exposure of the Central Igneous Complex. The gravimetric modelling shows a high-density volume whose centre of mass is about 4500 m deep. With increasing depth, and despite the restricted gravimetric resolution, the horizontal sections of the model suggest the presence of two distinct bodies, whose relative position accounts for the elongated shape of the high positive Bouguer gravity anomaly. These bodies are interpreted as magma chambers whose coeval volcanic counterparts are no longer preserved. The orientation defined by the two bodies is similar to that of other structures known in the southern group of the Cape Verde islands, thus suggesting a possible structural control constraining the location of the plutonic intrusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the electro-rheological behaviour of a series of four liquid crystal (LC) cyanobiphenyls with a number of carbon atoms in the alkyl group, ranging from five to eight (5CB–8CB). We present the flow curves for different temperatures and under the influence of an external electric field, ranging from 0 to 3 kV/mm, and the viscosity as a function of the temperature, for the same values of electric field, obtained for different shear rates. Theoretical interpretation of the observed behaviours is proposed in the framework of the continuum theory of Leslie–Ericksen for low molecular weight nematic LCs. In our analysis, the director alignment angle is only a function of the ratio between the shear rate and the square of the electric field – boundary conditions are neglected. By fitting the theoretical model to the experimental data, we are able to determine some viscosity coefficients and the dielectric anisotropy as a function of temperature. To interpret the behaviour of the flow curves near the nematic–isotropic transitions, we apply the continuum theory of Olmsted–Goldbart, which extends the theory of Leslie–Ericksen to the case where the degree of alignment of the LC molecules can also vary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of femtosecond laser interferometry to direct patterning of thin-film magnetic alloys is demonstrated. The formation of stripe gratings with submicron periodicities is achieved in Fe1-xVx (x=18-34wt. %) layers, with a difference in magnetic moments up to Delta mu/mu similar to 20 between adjacent stripes but without any significant development of the topographical relief (<1% of the film thickness). The produced gratings exhibit a robust effect of their anisotropy shape on magnetization curves in the film plane. The obtained data witness ultrafast diffusive transformations associated with the process of spinodal decomposition and demonstrate an opportunity for producing magnetic nanostructures with engineered properties upon this basis.