852 resultados para IS strategy
Resumo:
Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced specifically to model the feedback of small-scale deep convection on tropical planetary waves and tropical circulation in a highly efficient manner compatible with the approach through cloud-resolving modeling. Such a procedure is also useful for theoretical purposes. The basic idea in the approach is to use low-order truncation in the meriodonal direction through Gauss–Hermite quadrature projected onto a simple discrete radiation condition. In this fashion, the cloud-resolving modeling of equatorially trapped planetary waves reduces to the solution of a small number of purely zonal two-dimensional wave systems along a few judiciously chosen meriodonal layers that are coupled only by some additional source terms. The approach is analyzed in detail with full mathematical rigor for linearized equatorial primitive equations with source terms.
Resumo:
Serine racemase is a brain-enriched enzyme that synthesizes d-serine, an endogenous modulator of the glycine site of N-methyl-d-aspartate (NMDA) receptors. We now report that serine racemase catalyzes an elimination reaction toward a nonphysiological substrate that provides a powerful tool to study its neurobiological role and will be useful to develop selective enzyme inhibitors. Serine racemase catalyzes robust elimination of l-serine O-sulfate that is 500 times faster than the physiological racemization reaction, generating sulfate, ammonia, and pyruvate. This reaction provides the most simple and sensitive assay to detect the enzyme activity so far. We establish stable cell lines expressing serine racemase and show that serine racemase can also be converted into a powerful eliminase in cultured cells, while the racemization of l-serine is inhibited. Likewise, l-serine O-sulfate inhibits the synthesis of d-serine in primary astrocyte cultures. We conclude that the synthetic compound l-serine O-sulfate is a better substrate than l-serine as well as an inhibitor of d-serine synthesis. Inhibition of serine racemase provides a new strategy to selectively decrease NMDA receptor coactivation and may be useful in conditions in which overstimulation of NMDA receptors plays a pathological role.
Resumo:
Swimming fish leave wakes containing hydrodynamic and chemical traces. These traces mark their swim paths and could guide predators. We now show that nocturnal European catfish (Silurus glanis) locate a piscine prey (guppy, Poecilia reticulata) by accurately tracking its three-dimensional swim path before an attack in the absence of visible light. Wakes that were up to 10 s old were followed over distances up to 55 prey-body lengths in our setup. These results demonstrate that prey wakes remain sufficiently identifiable to guide predators, and to extend considerably the area in which prey is detectable. Moreover, wakes elicit rear attacks, which may be more difficult to detect by prey. Wake tracking may be a common strategy among aquatic predators.
Resumo:
The antimycobacterial compound ethambutol [Emb; dextro-2,2'-(ethylenediimino)-di-1-butanol] is used to treat tuberculosis as well as disseminated infections caused by Mycobacterium avium. The critical target for Emb lies in the pathway for the biosynthesis of cell wall arabinogalactan, but the molecular mechanisms for drug action and resistance are unknown. The cellular target for Emb was sought using drug resistance, via target overexpression by a plasmid vector, as a selection tool. This strategy led to the cloning of the M. avium emb region which rendered the otherwise susceptible Mycobacterium smegmatis host resistant to Emb. This region contains three complete open reading frames (ORFs), embR, embA, and embB. The translationally coupled embA and embB genes are necessary and sufficient for an Emb-resistant phenotype which depends on gene copy number, and their putative novel membrane proteins are homologous to each other. The predicted protein encoded by embR, which is related to known transcriptional activators from Streptomyces, is expendable for the phenotypic expression of Emb resistance, but an intact divergent promoter region between embR and embAB is required. An Emb-sensitive cell-free assay for arabinan biosynthesis shows that overexpression of embAB is associated with high-level Emb-resistant arabinosyl transferase activity, and that embR appears to modulate the in vitro level of this activity. These data suggest that embAB encode the drug target of Emb, the arabinosyl transferase responsible for the polymerization of arabinose into the arabinan of arabinogalactan, and that overproduction of this Emb-sensitive target leads to Emb resistance.
Resumo:
p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.
Resumo:
Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.
Resumo:
The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.
Resumo:
The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development.
Resumo:
We report a novel approach to the generation of monoclonal antibodies based on the molecular cloning and expression of immunoglobulin variable region cDNAs generated from single rabbit or murine lymphocytes that were selected for the production of specific antibodies. Single cells secreting antibodies for a specific peptide either from gp116 of the human cytomegalovirus or from gp120 of HIV-1 or for sheep red blood cells were selected using antigen-specific hemolytic plaque assays. Sheep red blood cells were coated with specific peptides in a procedure applicable to any antigen that can be biotinylated. Heavy- and light-chain variable region cDNAs were rescued from single cells by reverse transcription-PCR and expressed in the context of human immunoglobulin constant regions. These chimeric murine and rabbit monoclonal antibodies replicated the target specificities of the original antibody-forming cells. The selected lymphocyte antibody method exploits the in vivo mechanisms that generate high-affinity antibodies. This method can use lymphocytes from peripheral blood, can exploit a variety of procedures that identify individual lymphocytes producing a particular antibody, and is applicable to the generation of monoclonal antibodies from many species, including humans.
Resumo:
The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition.
Resumo:
For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.
Resumo:
Neurodegenerative diseases, in which neuronal cell disintegrate, bring about deteriorations in cognitive functions as is evidenced in millions of Alzheimer patients. A major neuropeptide, vasoactive intestinal peptide (VIP), has been shown to be neuroprotective and to play an important role in the acquisition of learning and memory. A potent lipophilic analogue to VIP now has been synthesized, [stearyl-norleucine17]VIP ([St-Nle17]VIP), that exhibited neuroprotection in model systems related to Alzheimer disease. The beta-amyloid peptide is a major component of the cerebral amyloid plaque in Alzheimer disease and has been shown to be neurotoxic. We have found a 70% loss in the number of neurons in rat cerebral cortical cultures treated with the beta-amyloid peptide (amino acids 25-35) in comparison to controls. This cell death was completely prevented by cotreatment with 0.1 pM [St-Nle17]VIP. Furthermore, characteristic deficiencies in Alzheimer disease result from death of cholinergic neurons. Rats treated with a cholinergic blocker (ethylcholine aziridium) have been used as a model for cholinergic deficits. St-Nle-VIP injected intracerebroventricularly or delivered intranasally prevented impairments in spatial learning and memory associated with cholinergic blockade. These studies suggest both an unusual therapeutic strategy for treatment of Alzheimer deficiencies and a means for noninvasive peptide administration to the brain.