963 resultados para INVITRO PROGESTERONE
Resumo:
Primary renal tumors are rare neoplasms in nonhuman primates. This report describes a mixed epithelial and stromal tumor of the kidney (MESTK) in a 14.5-year-old female ringtail lemur. The well-demarcated, solid, and cystic mass was located in the pelvis of the left kidney and consisted histologically of both epithelial and mesenchymal components. The mesenchymal cells were arranged in fascicles around cysts lined by a well-differentiated epithelium. Neither the mesenchymal nor the epithelial parts showed significant nuclear atypia or mitotic figures. To our knowledge, only 1 similar case, classified as adenoleiomyofibromatous hamartoma, has been reported in a ringtail lemur. In humans this tumor affects predominantly perimenopausal women and can express estrogen and progesterone receptors. However, neither estrogen nor progesterone receptors could be identified by immunohistochemistry in the tumor of the present ringtail lemur. Therefore, a hormonal mechanism could not be demonstrated in this case.
Resumo:
Pollakisuria in adult goats can be caused by diseases of the urinary tract and by distension of parts of the genital tract leading to irritation of the bladder. Hydrometra is the most common cause of uterine distension in goats and usually can be resolved by prostaglandin injections. But other pathologies of the uterus can generate a similar syndrome. A dwarf goat was presented at the clinic with a history of chronic pollakisuria and tenesm. An initial ultrasonographic examination of the abdomen led to the suspicion of hydrometra, but treatment with injections of prostaglandin were not successful. Blood samples revealed low progesterone and high oestrogen values. A laparotomy was performed and an enlarged uterus with 1.5 L of mucous content and cystic ovaries were found and partially removed. A single solid leiomyoma was diagnosed histologically in the uterine wall. Two months later the goat's condition had deteriorated and therefore she was euthanized. Necropsy and pathohistological examination revealed the presence of a metastasized adenocarcinoma of the uterus. In this case, the pollakisuria provoqued by distension of the uterus was not caused by hydrometra, but by neoplasia. The syndrome and the pathogenesis of the adenocarcinoma in consideration of the hormonal status of the patient is discussed.
Resumo:
Preeclampsia is a hypertensive disorder unique to pregnancy and remains the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiology of this disease remains still an enigma. There is increasing evidence that a combination of several factors is responsible for the development of preeclampsia. In this review, we discuss the role of aldosterone in the regulation of body fluid in pregnancy and preeclampsia. Aldosterone is produced by the enzyme aldosterone synthase and competes with cortisol and progesterone for the mineralocorticoid receptor, thus affecting sodium reabsorption and maternal volume expansion. Aldosterone seems to play a pivotal role in controlling blood pressure during pregnancy and to contribute to the well-being of the mother-to-be. Novel findings in understanding the underlying causes of preeclampsia provide a rationale for future novel prophylactic and therapeutic interventions in the treatment of this pregnancy-associated disease.
Resumo:
In this phase III, multinational, randomized trial, the International Breast Cancer Study Group, Breast International Group, and the National Surgical Adjuvant Breast and Bowel Project will attempt to define the effectiveness of cytotoxic therapy for patients with locoregional recurrence of breast cancer. We will evaluate whether chemotherapy prolongs disease-free survival and, secondarily, whether its use improves overall survival and systemic disease-free survival. Quality of life measurements will be monitored during the first 12 months of the study. Women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery and who have undergone complete surgical excision of all macroscopic disease but who subsequently develop isolated local and/or regional ipsilateral invasive recurrence are eligible. Patients are randomized to observation/no adjuvant chemotherapy or to adjuvant chemotherapy; all suitable patients receive radiation, hormonal, and trastuzumab therapy. Radiation therapy is recommended for patients who have not received previous adjuvant radiation therapy but is required for those with microscopically positive margins. The radiation field must encompass the tumor bed plus a surrounding margin to a dose of >or= 40 Gy. Radiation therapy will be administered before, during, or after chemotherapy. All women with estrogen receptor-positive and/or progesterone receptor-positive recurrence must receive hormonal therapy, with the agent and duration to be determined by the patient's investigator. Adjuvant trastuzumab therapy is permitted for those with HER2- positive tumors, provided that intent to treat is declared before randomization. Although multidrug regimens are preferred, the agents, doses, and use of supportive therapy are at the discretion of the investigator.
Resumo:
TRPV6 is an endothelial calcium entry channel that is strongly expressed in breast adenocarcinoma tissue. In this study, we further confirmed this observation by analysis of breast cancer tissues, which indicated that TRPV6 mRNA expression was up-regulated between 2-fold and 15-fold compared with the average in normal breast tissue. Whereas TRPV6 is expressed in the cancer tissue, its role as a calcium channel in breast carcinogenesis is poorly understood. Therefore, we investigated how TRPV6 affects the viability, apoptosis, and calcium transport in the breast cancer cell line T47D. Hormones can also affect the tumor development; hence, we determined the effects of estradiol, progesterone, and 1,25-vitamin D on TRPV6 transcription. Interestingly, the estrogen receptor antagonist tamoxifen reduced expression of TRPV6 and is able to inhibit its calcium transport activity (IC(50), 7.5 micromol/L). The in vitro model showed that TRPV6 can be regulated by estrogen, progesterone, tamoxifen, and 1,25-vitamin D and has a large influence on breast cancer cell proliferation. Moreover, the effect of tamoxifen on cell viability was enhanced when TRPV6 expression was silenced with small interfering RNA. TRPV6 may be a novel target for the development of calcium channel inhibitors to treat breast adenocarcinoma expressing TRPV6.
Resumo:
Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.
Resumo:
Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1micromol/L) reduced cell number to 51+/-3.6% of control, and this inhibitory effect was attenuated to 87.5+/-2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-alpha or estrogen receptor-beta. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.
Resumo:
Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.
Resumo:
OBJECTIVE: Glycodelin (PP14) is produced by the epithelium of the endometrium and its determination in the serum is used for functional evaluation of this tissue. Given the complex regulation and the combined contraceptive and immunosuppressive roles of glycodelin, the current lack of normal values for its serum concentration in the physiological menstrual cycle, derived from a large sample number, is a problem. We have therefore established reference values from over 600 sera. DESIGN: Retrospective study using banked serum samples. SETTING: University hospital. METHODS: Measurement of blood samples daily or every second day during one full cycle. MAIN OUTCOME MEASURES: Serum concentrations of glycodelin and normal values for every such one- or two-day interval were calculated. Late luteal phase glycodelin levels were compared with ovarian hormones. Follicular phase levels were compared with stimulated cycles from patients undergoing in vitro fertilization. RESULTS: Glycodelin concentrations were low around ovulation. Highest levels were observed at the end of the luteal phase; the glycodelin serum peak was reached 6-8 days after the one for progesterone. Late luteal glycodelin levels correlated negatively with the body mass index and positively with the progesterone level earlier in the secretory (mid-luteal) phase in the same woman. No associations with other ovarian hormones were observed. Follicular phase glycodelin levels were higher in the spontaneous than in the in vitro fertilization cycles. CONCLUSIONS: Normal values taken at two- or one-day intervals demonstrate the very late appearance of high serum glycodelin levels during the physiological menstrual cycle and their correlation with progesterone occurring earlier in the cycle.
Resumo:
Aldosterone is a key regulator of electrolyte and water homeostasis and plays a central role in blood pressure regulation. Hormonal changes during pregnancy, among them increased progesterone and aldosterone production, lead to the required plasma volume expansion of the maternal body as an accommodation mechanism for fetus growth. This review discusses the regulation of aldosterone production by aldosterone synthase (CYP11B2); the impact on aldosterone secretion due to the presence of a chimeric gene originating from a crossover between CYP11B1 and CYP11B2 in glucocorticoid remediable aldosteronism (GRA) - the inherited form of hypertension; enhanced aldosterone production in aldosterone-producing adenoma (APA); and idiopathic hyperaldosteronism (IHA). Features of hyperaldosteronism are also found in patients with apparent mineralocorticoid excess (AME), in which glucocorticoids exacerbate activation of the mineralocorticoid receptor (MR) because of a defect in the 11beta-hydroxysteroid dehydrogenase type 2 enzyme. Regulation of aldosterone production and tissue-specific activation of the mineralocorticoid receptor are prerequisites for optimal control of body fluids and blood pressure during pregnancy and contribute largely to the wellbeing of the mother-to-be.
Resumo:
The biology of relaxin differs in many respects between ruminants and nonruminants. Immunoreactive blood concentration of circulating relaxin is much less in ruminant (cattle and sheep) than in nonruminant (pigs) farm animals. The ovaries of the pig produce abundant quantities of the hormone in late pregnancy, whereas tissue sources of relaxin are not clearly defined in sheep and cattle. Relaxin facilitates parturition by cervical dilation and pelvic canal expansion in several mammalian species. Relaxin injected intramuscularly during late pregnancy can cause earlier parturition in cattle, but in sheep limited evidence indicates it does not induce earlier delivery than seen in diluent-treated controls. Intravenous infusion of increasing dosages of relaxin in beef heifers the last days of pregnancy decreased plasma progesterone concentration compared with phosphate buffer controls, but oxytocin plasma concentrations remained similar throughout the posttreatment period. Although continuous intravenous infusion of relaxin depressed blood levels of progesterone, it did not result in earlier parturition than seen in the diluent treated controls. Thus, the timing and method of relaxin administration during late pregnancy in ruminants affect remodelling of collagen and pelvic canal relaxation and can result in earlier parturition.
Resumo:
Methods of heat detection were compared in the Mid- Crest Area Cattle Evaluation Program (MACEP) heifer development program in the 1998-breeding season. A total of 189 heifers from thirteen consignors entered the program on November 10, 1997. These heifers were condition scored, hip height measured, weighed, disposition scored, booster vaccinated, and treated for parasites at the time of arrival. Determination of the heifer’s mature weight was made and a target of 65% of their mature weight at breeding was established. The ration was designed to meet this goal. The heifers were kept in a dry lot until all heifers were AI bred once. The heifers were periodically weighed and condition scored to monitor their gains and the ration was adjusted as needed. The estrus synchronization program consisted of an oral progesterone analog for 14 days; 17 days after completion of the progesterone analog treatment a single injection of prostaglandin was given and the heifers were then estrus detected. Two concurrent methods of estrus detection were utilized: 1) Ovatec â electronic breeding probe (probe), 2) HeatWatchâ estrus detection system (HW), and 3) a combination of probe and HW. Probe readings were obtained each 12 hours and the heifers were continuously monitored for estrus activity using the HW system. The probe was used as the primary estrus detection method and the HW system was used as a back-up system. Those heifers that did not demonstrate any estrus signs prior to 96 hours post prostaglandin treatment were mass inseminated at 96 hours. Post AI breeding, 151 of the heifers were placed on pasture and ran with clean-up bulls for 60 days. The remaining heifers left the program after the AI breeding was completed. Pregnancy to the AI breeding was determined by ultrasound on June 29, 1998. Results from using both probe and HW were 60% pregnant by AI, probe alone was 32% pregnant by AI, and HW alone was 27% pregnant by AI. The result of mass insemination was 20% pregnant by AI.
Resumo:
The hypothalamus in the lower part of the brain contains neurons that produce a small peptide, gonadotropin- releasing hormone (GnRH, LHRH), that regulates luteinizing hormone (LH) secretion by the anterior pituitary gland. Important functions of LH include induction of ovulation in preovulatory follicles during estrus and the luteinization of granulosa cells lining those collapsed follicles to form corpora lutea that produce progesterone during the luteal phase of the estrous cycle or during pregnancy. The production of progesterone by the corpus luteum conveys a negative feed-back action at the central nervous system (CNS) for further episodic secretion of GnRH and in turn, LH secretion. Gonadal removal (i.e., ovariectomy) allows a greater amount of LH secretion to occur during a prolonged period. The objectives of this study were to characterize the pattern of GnRH secretion in the cerebrospinal fluid (CSF) of the bovine third ventricle region of the hypothalamus, determine its correspondence with the tonic and surge release of LH in ovariectomized cows, and examine the dynamics of GnRH pulse release activity in response to known modulators of LH release (suckling, neuropeptide-Y [NPY]). In ovariectomized cows, both tonic release patterns and estradiol-induced surges of GnRH and LH were highly correlated. A 500-microgram dose of NPY caused an immediate cessation of LH pulses and decreased plasma concentrations of LH for at least 4 hours. This corresponded with a decrease in both GnRH pulse amplitude and frequency. In anestrous cows, GnRH pulse frequency did not change before and 48 to 54 hours after weaning on day 18 postpartum, but GnRH concentration and amplitudes of GnRH pulses increased in association with weaning and heightened secretion of LH. It is clear that high-frequency, highamplitude pulses of LH are accompanied by similar patterns of GnRH in CSF of adult cattle. Yet strong inhibitors of LH pulsatility, putatively acting at the level of the central nervous system (i.e., suckling) or at both the central nervous system and pituitary (NPY) levels, produced periods of discordance between GnRH and LH pulses.
Resumo:
The effects of superovulatory treatment (follicle stimulating hormone [FSH] versus human menopausal gonadotropin [HMG]) and of route of administration (intramuscular versus intravenous) of prostaglandin F2a (PGF2a) on hormonal profiles were determined in 32 Angus x Hereford heifers for breeding and subsequent embryo collection and transfer. Heifers were superstimulated either with FSH (total of 26 milligrams) or HMG (total of 1,050 international units) beginning on days 9 to 12 of an estrous cycle and PGF2a (40 milligrams) was administered at 60 and 72 hours after the beginning of superovulatory treatments. Heifers were artificially inseminated three times at 12-hour intervals beginning 48 hours after PGF2a treatment. Blood serum samples were collected immediately before treatments began and at frequent intervals until embryo collection 288 hours later. Concentrations of luteinizing hormone (LH) and FSH were not affected by hormone treatments, route of PGF2a injection, or interactions between them. Estradiol-17ß (E2-17ß) levels were higher in HMG- than in FSH-treated heifers 60 hours after gonadotropin treatment. Peak concentration of E2-17ß occurred earlier in HMGthan in FSH-treated heifers and earlier in heifers injected with PGF2a intramuscularly than those injected intravenously. Progesterone concentrations were not influenced by treatment or route of PGF2a administration. The progesterone:E2-17ß ratio was higher in FSH- than in HMG-treated heifers 24 hours after the LH peak. The high steroid hormone concentrations in superovulated beef heifers before and after ovulation may lead to asynchrony between stages of embryonic development, a situation that may interfere with the pregnancy outcome of superovulated embryos in recipient animals.
Resumo:
Progesterone secretion is crucial for maintaining pregnancy to parturition in mammalian species, and in cattle the corpus luteum is the primary source of this hormone. This study determined the roles of prolactin (PRL), growth hormone (GH) and luteinizing hormone (LH) in the luteotropic process in beef heifers hypophyseal stalk-transected (HST, n = 7) or sham operated on (SOC, n = 9) during midgestation. The main finding was that endogenous PRL and GH maintained progesterone secretion in HST heifers similar to that in SOC throughout pregnancy. Serum PRL averaged 37 vs 187 and GH 2 vs 4 ng/ml in HST compared with SOC, whereas LH abruptly decreased to undetectable levels after HST compared with a modest 0A4 ng/ml in SOC heifers. The second finding was that parturition and lactation occurred in HST heifers with calf delivery induced to occur at the same time as SOC. Milk production in HST animals was severely limited, and postpartum estrus obliterated compared with SOC. The suckling stimulus sustained milk ejection in HST heifers in spite of diminished PRL and GH secretion. The results suggest that PRL, GH and possibly placental lactogen are luteotropic during pregnancy in cattle.