952 resultados para IMMUNOGLOBULIN-LIKE PROTEIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: the purpose this study was to investigate the relationship of anti-myosin and anti-heat shock protein immunoglobulin G (IgG) serum antibodies to the original heart disease of cardiac transplant recipients, and also to rejection and patient survival after cardiac transplantation.Methods: Anti-myosin and anti-heat shock protein (anti-hsp) IgG antibodies were evaluated in pre-transplant sera from 41 adult cardiac allograft recipients and in sequential post-transplant serum samples from 11 recipients, collected at the time of routine endomyocardial biopsies during the first 6 months after transplantation. In addition, the levels of these antibodies were determined from the sera of 28 healthy blood donors.Results: Higher anti-myosin antibody levels were observed in pre-transplant sera than in sera from normal controls. Moreover, patients with chronic Chagas heart disease showed higher anti-myosin levels than patients with ischemic heart disease, and also higher levels, although not statistically significant, than patients with dilated cardiomyopathy. Higher anti-hsp levels were also observed in patients compared with healthy controls, but no significant differences were detected among,the different types of heart diseases. Higher pre-transplant anti-myosin, but not anti-hsp, levels were associated with lower 2-year post-transplant survival. In the post-transplant period, higher anti-myosin IgG levels were detected in sera collected during acute rejection than in sera collected during the rejection-free period, whereas anti-hsp IgG levels showed no difference between these periods.Conclusions: the present findings are of interest for post-transplant management and, in addition, suggest a pathogenic role for anti-myosin antibodies in cardiac transplant rejection, as has been proposed in experimental models of cardiac transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polysaccharide antigen from P. brasiliensis has been largely employed in serologic tests, as well as in skin tests, to evaluate cellular immunity. SDS-PAGE analysis of this antigen has revealed a variability in the number of bands exhibited by isolates SN, 265, 339, 113 and 18 (7 to 16 bands). The antigens obtained from isolates 2, PTL, 192 and Adel showed two or three bands. Glycoprotein analysis demonstrated a broad region between 50 and 90 kDa. Major bands of 48 and 30 kDa were present in almost all antigens. Optimal complement fixing dilution appears to be unaffected by the number of bands presented by different antigens. The immunoblot analysis revealed that the 90 and 30 kDa bands were mainly recognized by sera from paracoccidioidomycosis patients. Bands of high molecular weight were also recognized by most of the sera studied. Sera from histoplasmosis recognized the 94 kDa band. In conclusion, although the isolates exhibit quantitative variability in the number of fractions, it is possible to use only one or two samples given the greatest frequency of reactivity is seen in the 30 and 90 kDa fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luciferyl adenylate, the key intermediate in beetle bioluminescence, is produced through adenylation of D-luciferin by beetle luciferases and also by mealworm luciferase-like enzymes which produce a weak red chemiluminescence. However, luciferyl adenylate is only weakly chemiluminescent in water at physiological pH and it is unclear how efficient bioluminescence evolved from its weak chemiluminescent properties. We found that bovine serum albumin (BSA) and neutral detergents enhance luciferyl adenylate chemiluminescence by three orders of magnitude, simulating the mealworm luciferase-like enzyme chemiluminescence properties. These results suggest that the beetle protoluciferase activity arose as an enhanced luciferyl adenylate chemiluminescence in the protein environment of the ancestral AMP-ligase. The predominance of luciferyl adenylate chemiluminescence in the red region under most conditions suggests that red luminescence is a more primitive condition that characterized the original stages of protobioluminescence, whereas yellow-green bioluminescence may have evolved later through the development of a more structured and hydrophobic active site. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods: Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14-16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results: The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion: CpG-ODN treatment did not induce specific maturation and cytokine expression in foal macrophages and DCs. Nevertheless, adult horse DCs, but not macrophages, increased their expression of IL-12 and IFNα cytokines upon CpG-ODN stimulation. Importantly, foals presented an age-dependent limitation in the expression of MHC class II in macrophages and DCs, independent of treatment. © 2007 Flaminio et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the structure of the fatty acid-binding protein 6 (fabp6) gene and the tissue-specific distribution of its transcripts in embryos, larvae and adult zebrafish (Danio rerio). Like most members of the vertebrate FABP multigene family, the zebrafish fabp6 gene contains four exons separated by three introns. The coding region of the gene and expressed sequence tags code for a polypeptide of 131 amino acids (14 kDa, pI 6.59). The putative zebrafish Fabp6 protein shared greatest sequence identity with human FABP6 (55.3%) compared to other orthologous mammalian FABPs and paralogous zebrafish Fabps. Phylogenetic analysis showed that the zebrafish Fabp6 formed a distinct clade with the mammalian FABP6s. The zebrafish fabp6 gene was assigned to linkage group (chromosome) 21 by radiation hybrid mapping. Conserved gene synteny was evident between the zebrafish fabp6 gene on chromosome 21 and the FABP6/Fabp6 genes on human chromosome 5, rat chromosome 10 and mouse chromosome 11. Zebrafish fabp6 transcripts were first detected in the distal region of the intestine of embryos at 72 h postfertilization. This spatial distribution remained constant to 7-day-old larvae, the last stage assayed during larval development. In adult zebrafish, fabp6 transcripts were detected by RT-PCR in RNA extracted from liver, heart, intestine, ovary and kidney (most likely adrenal tissue), but not in RNA from skin, brain, gill, eye or muscle. In situ hybridization of a fabp6 riboprobe to adult zebrafish sections revealed intense hybridization signals in the adrenal homolog of the kidney and the distal region of the intestine, and to a lesser extent in ovary and liver, a transcript distribution that is similar, but not identical, to that seen for the mammalian FABP6/Fabp6 gene. © 2008 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was immunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast. © 2011 China National Rice Research Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snake venom serine proteinases (SVSPs) are hemostatically active toxins that perturb the maintenance and regulation of both the blood coagulation cascade and fibrinolytic feedback system at specific points, and hence, are widely used as tools in pharmacological and clinical diagnosis. The crystal structure of a thrombin-like enzyme (TLE) from Bothrops jararacussu venom (Jararacussin-I) was determined at 2.48 Å resolution. This is the first crystal structure of a TLE and allows structural comparisons with both the Agkistrodon contortrix contortrix Protein C Activator and the Trimeresurus stejnegeri plasminogen activator. Despite the highly conserved overall fold, significant differences in the amino acid compositions and three-dimensional conformations of the loops surrounding the active site significantly alter the molecular topography and charge distribution profile of the catalytic interface. In contrast to other SVSPs, the catalytic interface of Jararacussin-I is highly negatively charged, which contributes to its unique macromolecular selectivity. © 2012 The Protein Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzymelinked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.