960 resultados para Hyperspectral remote sensing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The susceptibility of a catchment to flooding is affected by its soil moisture prior to an extreme rainfall event. While soil moisture is routinely observed by satellite instruments, results from previous work on the assimilation of remotely sensed soil moisture into hydrologic models have been mixed. This may have been due in part to the low spatial resolution of the observations used. In this study, the remote sensing aspects of a project attempting to improve flow predictions from a distributed hydrologic model by assimilating soil moisture measurements are described. Advanced Synthetic Aperture Radar (ASAR) Wide Swath data were used to measure soil moisture as, unlike low resolution microwave data, they have sufficient resolution to allow soil moisture variations due to local topography to be detected, which may help to take into account the spatial heterogeneity of hydrological processes. Surface soil moisture content (SSMC) was measured over the catchments of the Severn and Avon rivers in the South West UK. To reduce the influence of vegetation, measurements were made only over homogeneous pixels of improved grassland determined from a land cover map. Radar backscatter was corrected for terrain variations and normalized to a common incidence angle. SSMC was calculated using change detection. To search for evidence of a topographic signal, the mean SSMC from improved grassland pixels on low slopes near rivers was compared to that on higher slopes. When the mean SSMC on low slopes was 30–90%, the higher slopes were slightly drier than the low slopes. The effect was reversed for lower SSMC values. It was also more pronounced during a drying event. These findings contribute to the scant information in the literature on the use of high resolution SAR soil moisture measurement to improve hydrologic models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scintillometry, a form of ground-based remote sensing, provides the capability to estimate surface heat fluxes over scales of a few hundred metres to kilometres. Measurements are spatial averages, making this technique particularly valuable over areas with moderate heterogeneity such as mixed agricultural or urban environments. In this study, we present the structure parameters of temperature and humidity, which can be related to the sensible and latent heat fluxes through similarity theory, for a suburban area in the UK. The fluxes are provided in the second paper of this two-part series. A millimetre-wave scintillometer was combined with an infrared scintillometer along a 5.5 km path over northern Swindon. The pairing of these two wavelengths offers sensitivity to both temperature and humidity fluctuations, and the correlation between wavelengths is also used to retrieve the path-averaged temperature–humidity correlation. Comparison is made with structure parameters calculated from an eddy covariance station located close to the centre of the scintillometer path. The performance of the measurement techniques under different conditions is discussed. Similar behaviour is seen between the two data sets at sub-daily timescales. For the two summer-to-winter periods presented here, similar evolution is displayed across the seasons. A higher vegetation fraction within the scintillometer source area is consistent with the lower Bowen ratio observed (midday Bowen ratio < 1) compared with more built-up areas around the eddy covariance station. The energy partitioning is further explored in the companion paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study has compared preliminary estimates of effective leaf area index (LAI) derived from fish-eye lens photographs to those estimated from airborne full-waveform small-footprint LiDAR data for a forest dataset in Australia. The full-waveform data was decomposed and optimized using a trust-region-reflective algorithm to extract denser point clouds. LAI LiDAR estimates were derived in two ways (1) from the probability of discrete pulses reaching the ground without being intercepted (point method) and (2) from raw waveform canopy height profile processing adapted to small-footprint laser altimetry (waveform method) accounting for reflectance ratio between vegetation and ground. The best results, that matched hemispherical photography estimates, were achieved for the waveform method with a study area-adjusted reflectance ratio of 0.4 (RMSE of 0.15 and 0.03 at plot and site level, respectively). The point method generally overestimated, whereas the waveform method with an arbitrary reflectance ratio of 0.5 underestimated the fish-eye lens LAI estimates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial variability of liquid cloud water content and rainwater content is analysed from three different observational platforms: in situ measurements from research aircraft, land-based remote sensing techniques using radar and lidar, and spaceborne remote sensing from CloudSat. The variance is found to increase with spatial scale, but also depends strongly on the cloud or rain fraction regime, with overcast regions containing less variability than broken cloud fields. This variability is shown to lead to large biases, up to a factor of 4, in both the autoconversion and accretion rates estimated at a model grid scale of ≈40 km by a typical microphysical parametrization using in-cloud mean values. A parametrization for the subgrid variability of liquid cloud and rainwater content is developed, based on the observations, which varies with both the grid scale and cloud or rain fraction, and is applicable for all model grid scales. It is then shown that if this parametrization of the variability is analytically incorporated into the autoconversion and accretion rate calculations, the bias is significantly reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paternal biocontainment methods (PBMs) act by preventing pollen-mediated transgene flow. They are compromised by transgene escape via the crop-maternal line. We therefore assess the efficacy of PBMs for transgenic rapeseed (Brassica napus) biocontainment across the United Kingdom by estimating crop-maternal hybridization with its two progenitor species. We used remote sensing, field surveys, agricultural statistics, and meta-analysis to determine the extent of sympatry between the crop and populations of riparian and weedy B. rapa and B. oleracea. We then estimated the incidence of crop-maternal hybridization across all settings to predict the efficacy of PBMs. Evidence of crop chloroplast capture by the progenitors was expanded to a national scale, revealing that crop-maternal gene flow occurs at widely variable rates and is dependent on both the recipient and setting. We use these data to explore the value that this kind of biocontainment can bring to genetic modification (GM) risk management in terms of reducing the impact that hybrids have on the environment rather than preventing or reducing hybrid abundance per se.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs) are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT) was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC) algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion). Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM) algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE) and better distribution of feature points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A present day control integration performed with the Hadley Centre's coupled climate model HadGEM1.2 experiences a large salinity bias in the Arctic Ocean when compared to in situ observations. Such a large salinity bias may have implications for both Arctic and Atlantic Ocean circulation. Large differences are seen between the runoff in HadGEM and the observations from the Global Runoff Data Centre, in particular in the Lena catchment, which could account for this salinity bias. We suggest that this discrepancy in runoff is, at least in part, due to a lack of snow accumulation in the model. The model climatology is very different to those obtained by remote sensing, such as the Global Snow Water Equivalent Climatology (NSIDC) and GlobSnow (ESA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The topography of many floodplains in the developed world has now been surveyed with high resolution sensors such as airborne LiDAR (Light Detection and Ranging), giving accurate Digital Elevation Models (DEMs) that facilitate accurate flood inundation modelling. This is not always the case for remote rivers in developing countries. However, the accuracy of DEMs produced for modelling studies on such rivers should be enhanced in the near future by the high resolution TanDEM-X WorldDEM. In a parallel development, increasing use is now being made of flood extents derived from high resolution Synthetic Aperture Radar (SAR) images for calibrating, validating and assimilating observations into flood inundation models in order to improve these. This paper discusses an additional use of SAR flood extents, namely to improve the accuracy of the TanDEM-X DEM in the floodplain covered by the flood extents, thereby permanently improving this DEM for future flood modelling and other studies. The method is based on the fact that for larger rivers the water elevation generally changes only slowly along a reach, so that the boundary of the flood extent (the waterline) can be regarded locally as a quasi-contour. As a result, heights of adjacent pixels along a small section of waterline can be regarded as samples with a common population mean. The height of the central pixel in the section can be replaced with the average of these heights, leading to a more accurate estimate. While this will result in a reduction in the height errors along a waterline, the waterline is a linear feature in a two-dimensional space. However, improvements to the DEM heights between adjacent pairs of waterlines can also be made, because DEM heights enclosed by the higher waterline of a pair must be at least no higher than the corrected heights along the higher waterline, whereas DEM heights not enclosed by the lower waterline must in general be no lower than the corrected heights along the lower waterline. In addition, DEM heights between the higher and lower waterlines can also be assigned smaller errors because of the reduced errors on the corrected waterline heights. The method was tested on a section of the TanDEM-X Intermediate DEM (IDEM) covering an 11km reach of the Warwickshire Avon, England. Flood extents from four COSMO-SKyMed images were available at various stages of a flood in November 2012, and a LiDAR DEM was available for validation. In the area covered by the flood extents, the original IDEM heights had a mean difference from the corresponding LiDAR heights of 0.5 m with a standard deviation of 2.0 m, while the corrected heights had a mean difference of 0.3 m with standard deviation 1.2 m. These figures show that significant reductions in IDEM height bias and error can be made using the method, with the corrected error being only 60% of the original. Even if only a single SAR image obtained near the peak of the flood was used, the corrected error was only 66% of the original. The method should also be capable of improving the final TanDEM-X DEM and other DEMs, and may also be of use with data from the SWOT (Surface Water and Ocean Topography) satellite.