875 resultados para Hydrogen pressures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing the ignition and high-gain targets for inertial confinement fusion (ICF) requires a condensed uniform layer of the hydrogen fuel on the inner surface of a spherical polymer shell. The fuel layers have to be highly uniform in thickness and roughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical conditions for hydrogenembrittlement (HE) risk of highstrengthgalvanizedsteel (HSGS) wires and tendons exposed to alkaline concrete pore solutions have been evaluated by means of electrochemical and mechanical testing. There is a relationship between the hydrogenembrittlementrisk in HSGS and the length of hydrogen evolution process in alkalinemedia. The galvanizedsteel suffers anodic dissolution simultaneously to the hydrogen evolution which does not stop until the passivation process is completed. HSGS wires exposed to a very highalkalinemedia have showed HE risk with loss in mechanical properties only if long periods with hydrogen evolution process take place with a simultaneous intensive galvanized coating reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Internal Structure of Hydrogen-Air Diffusion Flames. Tho purpose of this paper is to study finite rate chemistry effects in diffusion controlled hydrogenair flames undor conditions appearing in some cases in a supersonic combustor. Since for large reaction rates the flame is close to chemical equilibrium, the reaction takes place in a very thin region, so thata "singular perturbation "treatment" of the problem seems appropriate. It has been shown previously that, within the inner or reaction zone, convection effects may be neglocted, the temperature is constant across the flame, and tho mass fraction distributions are given by ordinary differential equations, whore tho only independent variable involved is tho coordinate normal to the flame surface. Tho solution of the outer problom, which is a pure mixing problem with the additional condition that fuol and oxidizer do not coexist in any zone, provides t h e following information: tho flame position, rates of fuel consumption, temperature, concentrators of species, fluid velocity outside of tho flame, and the boundary conditions required to solve the "inner problem." The main contribution of this paper consists in the introduction of a fairly complicated chemical kinetic scheme representing hydrogen-oxygen reaction. The nonlinear equations expressing the conservation of chemical species are approximately integrated by means of an integral method. It has boen found that, in the case considered of a near-equilibrium diffusion flame, tho role played by the dissociation-recombination reactions is purely marginal, and that somo of the second order "shuffling" reactions are close to equilibrium. The method shown here may be applied to compute the distanco from the injector corresponding to a given separation from equilibrium, say ten to twenty percent. For the casos whore this length is a small fraction of the combustion zone length, the equilibrium treatment describes properly tho flame behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an interactive set of tools used to determine the safety of tunnels and to provide data for the decision making of its mainteinance. Although, no doubt, there are still several drawbacks in the difficult procedures in use it is clear that the way is promising and future improvements both in experimental and analytical methods will increase our understanding of this matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tritium breeding is an essential component of future fusion nuclear reactors. Nuclear fusion reactors require Kg quantities of tritium per year of operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of hydrogen to natural gas could be a short-term alternative to nowadays fossil fuels as the emissions of greenhouse gases may be reduced. The aim of this study is to evaluate the performance and emissions of a park ignition engine fuelled with pure natural gas, pure hydrogen and different blends of hydrogen and natural gas (HCNG). The increase of the hydrogen fraction leads to variations in the cylinder pressure and CO2 emissions. In this work, a combustion model based on thermodynamic equations is used considering separated zones for the burned and unburned gases. The results show that the maximum cylinder pressure gets higher as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a drecrease in the CO2 emissions. Due to hydrogen properties, leaner fuel-air mixtures can be used along with the appropiate spark timing, leading to an engine emissions improvement without a performance worsening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of hydrogen to natural gas could be a short-term alternative to today’s fossil fuels, as greenhouse gas emissions may be reduced. The aim of this study is to evaluate the emissions and performance of a spark ignition engine fuelled by pure natural gas, pure hydrogen, and different blends of hydrogen and natural gas (HCNG). Increasing the hydrogen fraction leads to variations in cylinder pressure and CO2 emissions. In this study, a combustion model based on thermodynamic equations is used, considering separate zones for burned and unburned gases. The results show that the maximum cylinder pressure rises as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a decrease in CO2 emissions. Due to the properties of hydrogen, leaner fuel–air mixtures can be used along with the appropriate spark timing, leading to an improvement in engine emissions with no loss of performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A research programme is being carried out at the Institute Nacional de Tecnica Aeroespacial of Spain, on several aspects of the formation of nitrogen oxides in continuous flow combustion systems, considering hydrogen and hydrocarbons as fuels. The research programme is fundamentally oriented on the basic aspects of the problem, although it also includes the study of the influence on the formation process of several operational and design variables of the combusters, such as type of fuels, fuel/air ratio, degree of mixing in premixed type flames, existence of droplets as compared with homogeneous combustion.This problem of nitrogen oxides formation is receiving lately great attention, specially in connection with automobile reciprocating engines and aircraft gas turbines. This is due to the fact of the increasing frequency and intensity of photochemical hazes or smog, typical of urban areas submitted to strong solar radiation, which are originated by the action on organic compounds of the oxidants resulting from the photochemical decomposition of nitrogen dioxide N02. In the combustion process almost all nitrogen oxides are in form of NO. This nitric oxide reacts with the oxygen of the air and forms N02, this reaction only taking place in or near the exhaust of tne motors, since the N0-02 reaction becomes frozen for the concentration existing in the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular hydrogen strongly interacts with vicinal Ge(100) surfaces during preparation in a metal organic vapor phase epitaxy reactor. According to X-ray photoemission spectroscopy and Fourier-transform infrared spectroscopy results, we identify two characteristic reflection anisotropy (RA) spectra for H-free and monohydride-terminated vicinal Ge(100) surfaces. RAS allows in situ monitoring of the surface termination and enables spectroscopic hydrogen kinetic desorption studies on the Ge(100) surface. Comparison of evaluated values for the activation energy and the pre-exponential factor of H desorption evaluated at different photon energies reflects that H unevenly affects the shape of the RA spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the decades to come can be foreseen that electricity and water will keep be playing a key role in the countries development, both can be considered the most important energy vectors and its control can be crucial for governments, companies and leaders in general. Energy is essential for all human activities and its availability is critical to economic and social development. In particular, electricity, a form of energy, is required to produce goods, to provide medical assistance and basic civic services in education, to assure availability of clean water, to create conducive environment for prosperity and improvement, and to keep an acceptable quality of life. The way in which electricity is generated from different resources varies through the different countries. Nuclear energy controlled within reactors to steam production, gas, fuel-oil and coal fired in power stations, water, solar and wind energy among others are employed, sometimes not very efficiently, to produce electricity. The so call energy mix of an individual country is formed up by the contribution of each resource or form of energy to the electricity generation market of the so country. During the last decade the establishment of proper energy mixes for countries has gained much importance, and energy drivers should enforce long term plans and policies. Hints, reports and guides giving tracks on energy resources contribution are been developed by noticeable organisations like the IEA (International Energy Agency) or the IAEA (International Atomic Energy Agency) and the WEC (World Energy Council). This paper evaluates energy issues the market and countries are facing today regarding energy mix scheduling and panorama. This paper revises and seeks to improve methodology available that are applicable on energy mix plan definition. Key Factors are identified, established and assessed through this paper for the common implementation, the themes driving the future energy mix methodology proposal. Those have a clear influence and are closely related to future environmental policies. Key Factors take into consideration sustainability, energy security, social and economic growth, climate change, air quality and social stability. The strength of the Key Factors application on energy system planning to different countries is contingent on country resources, location, electricity demand and electricity generation industry, technology available, economic situation and prospects, energy policy and regulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the structure of flame balls encountered under microgravity conditions, which are stable due to radiant energy losses from H₂O, is carried out for fuel-lean hydrogen-air mixtures. It is seen that, because of radiation losses, in stable flame balls the maximum flame temperature remains close to the crossover temperature, at which the rate of the branching step H + O₂ -> OH + O equals that of the recombination step H + O₂ + M -> HO₂ + M. Under those conditions, all chemical intermediates have very small concentrations and follow the steady-state approximation, while the main species react according to the overall step 2H₂ + O₂-> 2H₂O; so that a one-step chemical-kinetic description, recently derived by asymptotic analysis for near-limit fuel-lean deflagrations, can be used with excellent accuracy to describe the whole branch of stable flame balls. Besides molecular diffusion in a binary-diffusion approximation, Soret diffusion is included, since this exerts a nonnegligible effect to extend the flammability range. When the large value of the activation energy of the overall reaction is taken into account, the leading-order analysis in the reaction-sheet approximation is seen to determine the flame ball radius as that required for radiant heat losses to remove enough of the heat released by chemical reaction at the flame to keep the flame temperature at a value close to crossover. The results are relevant to burning velocities at lean equivalent ratios and may influence fire-safety issues associated with hydrogen utilization.