994 resultados para Hydrogen flow
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
This work is directed to the study and evaluation of gas diffusion electrodes as detectors in hydrogen sensors. Electrochemical experiments were carried out with rotating disk electrodes with a thin porous coating of the catalyst as a previous step to select useful parameters for the sensor. An experimental arrangement made in the laboratory that simulates the sensor was found appropriate to detect volumetric hydrogen percentages above 0.25% in mixtures H2:N2. The system shows a linear response for volumetric percentages of hydrogen between 0.25 and 2 %.
Resumo:
A photometric flow titration based on the redox reaction between KMnO4 and minoxidil is described. The best titration results were observed at 3.20 x 10-4 mol L-1 KMnO4 and 1.00 x 10-3 mol L-1 minoxidil, using the minoxidil solutions as titrant. The flow rate was fixed at 17 mL min-1 and the titrant was added to the system in aliquots of 500 µL, the color changes were monitored at 550 nm. The method was applied to commercial samples and compared with the results from a chromatographic procedure. Recoveries from 97.6 to 102.8 % were observed depending on the sample. Comparison with the chromatographic procedure reveled relative errors of 3.5 - 4.0 %.
Resumo:
Supersonic axial turbine stages typically exhibit lower efficiencies than subsonic axial turbine stages. One reason for the lower efficiency is the occurrence of shock waves. With higher pressure ratios the flow inside the turbine becomes relatively easily supersonic if there is only one turbine stage. Supersonic axial turbines can be designed in smaller physical size compared to subsonic axial turbines of same power. This makes them good candidates for turbochargers in large diesel engines, where space can be a limiting factor. Also the production costs are lower for a supersonic axial turbine stage than for two subsonic stages. Since supersonic axial turbines are typically low reaction turbines, they also create lower axial forces to be compensated with bearings compared to high reaction turbines. The effect of changing the stator-rotor axial gap in a small high (rotational) speed supersonic axial flow turbine is studied in design and off-design conditions. Also the effect of using pulsatile mass flow at the supersonic stator inlet is studied. Five axial gaps (axial space between stator and rotor) are modeled using threedimensional computational fluid dynamics at the design and three axial gaps at the off-design conditions. Numerical reliability is studied in three independent studies. An additional measurement is made with the design turbine geometry at intermediate off-design conditions and is used to increase the reliability of the modelling. All numerical modelling is made with the Navier-Stokes solver Finflo employing Chien’s k ¡ ² turbulence model. The modelling of the turbine at the design and off-design conditions shows that the total-to-static efficiency of the turbine decreases when the axial gap is increased in both design and off-design conditions. The efficiency drops almost linearily at the off-design conditions, whereas the efficiency drop accelerates with increasing axial gap at the design conditions. The modelling of the turbine stator with pulsatile inlet flow reveals that the mass flow pulsation amplitude is decreased at the stator throat. The stator efficiency and pressure ratio have sinusoidal shapes as a function of time. A hysteresis-like behaviour is detected for stator efficiency and pressure ratio as a function of inlet mass flow, over one pulse period. This behaviour arises from the pulsatile inlet flow. It is important to have the smallest possible axial gap in the studied turbine type in order to maximize the efficiency. The results for the whole turbine can also be applied to some extent in similar turbines operating for example in space rocket engines. The use of a supersonic stator in a pulsatile inlet flow is shown to be possible.
Resumo:
A flow-injection system with sample and reagent addition by the synchronous merging zones approach for calcium determination in milk by flame AAS is proposed. Main parameters were optimized using a factorial design with central point. The optimum conditions were 2.5% (m/v) for La concentration, 8 mL min-1 for the carrier flow-rate, 20 cm for coiled reactor and 250 ìL for sample volume. Different sample preparation procedures were evaluated such as dilution in water or acid and microwave-assisted decomposition using concentrated or diluted acids. The optimized flow system was applied to determine Ca in eleven commercial milk samples and two standard reference materials diluted in water. Similar calcium levels were encountered comparing the results obtained by the proposed method (dilution in water) with those obtained using microwave-oven digestion. Results obtained in two standard reference materials were in agreement at 95% confidence level with those certified. Recoveries of spiked samples were in the 93% - 116% range. Relative standard deviation (n = 12) was < 5.4% and the sample throughput was 150 measurements per hour, corresponding to a consumption of 250 µL of sample and 6.25 mg La per determination.
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.
Resumo:
Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry
Resumo:
The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.
Resumo:
A flow injection method for the quantitative analysis of vancomycin hydrochloride, C66H75Cl2N9O24.HCl (HVCM), based on the reaction with copper (II) ions, is presented. HVCM forms a lilac-blue complex with copper ions at pH≅4.5 in aqueous solutions, with maximum absorption at 555 nm. The detection limit was estimated to be about 8.5×10-5 mol L-1; the quantitation limit is about 2.5×10-4 mol L-1 and about 30 determinations can be performed in an hour. The accuracy of the method was tested through recovery procedures in presence of four different excipients, in the proportion 1:1 w/w. The results were compared with those obtained with the batch spectrophotometric and with the HPLC methods. Statistical comparison was done using the Student's procedure. Complete agreement was found at a 0.95 significance level between the proposed flow injection and the batch spectrophotometric methods, which present similar precision (RSD: 2.1 % vs. 1.9%).
Resumo:
A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.
Resumo:
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of total sulfur in the form of sulfate, precipitated in the form of barium sulfate, is presented. The method was applied to biodiesel, to plant leaves and to natural waters analysis. The analytical signal (S) correlates linearly with sulfate concentration (C) between 20 and 120 ppm, through the equation S=-1.138+0.0934 C (r = 0.9993). The experimentally observed limit of detection is about 10 ppm. The mean R.S.D. is about 3.0 %. Real samples containing sulfate were analyzed and the results obtained by the FI and by the reference batch turbidimetric method using the statistical Student's t-test and F-test were compared.
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.