865 resultados para Hybrid evolutionary optimization algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of MPLS networks survivability analysis is considered in this paper. The survivability indexes are defined which take into account the specificity of MPLS networks and the algorithm of its estimation is elaborated. The problem of MPLS network structure optimization under the constraints on the survivability indexes is considered and the algorithm of its solution is suggested. The experimental investigations were carried out and their results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian algorithms pose a limit to the performance learning algorithms can achieve. Natural selection should guide the evolution of information processing systems towards those limits. What can we learn from this evolution and what properties do the intermediate stages have? While this question is too general to permit any answer, progress can be made by restricting the class of information processing systems under study. We present analytical and numerical results for the evolution of on-line algorithms for learning from examples for neural network classifiers, which might include or not a hidden layer. The analytical results are obtained by solving a variational problem to determine the learning algorithm that leads to maximum generalization ability. Simulations using evolutionary programming, for programs that implement learning algorithms, confirm and expand the results. The principal result is not just that the evolution is towards a Bayesian limit. Indeed it is essentially reached. In addition we find that evolution is driven by the discovery of useful structures or combinations of variables and operators. In different runs the temporal order of the discovery of such combinations is unique. The main result is that combinations that signal the surprise brought by an example arise always before combinations that serve to gauge the performance of the learning algorithm. This latter structures can be used to implement annealing schedules. The temporal ordering can be understood analytically as well by doing the functional optimization in restricted functional spaces. We also show that there is data suggesting that the appearance of these traits also follows the same temporal ordering in biological systems. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The work is supported by RFBR, grant 04-01-00858-a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a paper the method of complex systems and processes clustering based use of genetic algorithm is offered. The aspects of its realization and shaping of fitness-function are considered. The solution of clustering task of Ukraine areas on socio-economic indexes is represented and comparative analysis with outcomes of classical methods is realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATM network optimization problems defined as combinatorial optimization problems are considered. Several approximate algorithms for solving such problems are developed. Results of their comparison by experiments on a set of problems with random input data are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents some results of PLA area optimizing by means of its column and row folding. A more restricted type of PLA simple folding is considered. It is introduced by Egan and Liu and called as bipartite folding. An efficient approach is presented which allows finding an optimal bipartite folding without exhaustive computational efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article presents the exact algorithm for solving one case of the job-scheduling problem for the case when the source matrix is ordered by rows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is distributed genetic algorithm implementation (so called island algorithm) to accelerate the optimum searching process in space of solutions. Distributed genetic algorithm has also smaller chances to fall in local optimum. This conception depends on mutual cooperation of the clients which realize separate working of genetic algorithms on local machines. As a tool for implementation of distributed genetic algorithm, created to produce net's applications Java technology was chosen. In Java technology, there is a technique of remote methods invocation - Java RMI. By means of invoking remote methods it can send objects between clients and server RMI.