905 resultados para Human-computer interaction -- Design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tämä diplomityö tehtiin Convergens Oy:lle. Convergens on elektroniikan suunnittelutoimisto, joka on erikoistunut sulautettuihin järjestelmiin sekä tietoliikennetekniikkaan. Diplomityön tavoitteena oli suunnitella tietokonekortti tietoliikennesovelluksia varten asiakkaalle, jolta vaatimusmäärittelyt tulivat. Työ on rajattu koskemaan laitteen prototyypin suunnittelua. Työssä suunnitellaan pääasiassa WLAN-tukiaseman tietokone. Tukiasema onasennettavissa toimistoihin, varastoihin, kauppoihin sekä myös liikkuvaan ajoneuvoon. Suunnittelussa on otettu nämä asiat huomioon, ja laitteen akun pystyy lataamaan muun muassa auton akulla. Langattomat tekniikat ovat voimakkaasti yleistymässä, ja tämän työn tukiasema tarjoaakin varteenotettavan vaihtoehdon lukuisilla ominaisuuksillaan. Mukana on mm. GPS, Bluetooth sekä Ethernet-valmius. Langattomien tekniikoiden lisäksi myös sulautetut järjestelmät ovat voimakkaasti yleistymässä, ja nykyään mikroprosessoreita löytääkin lähesmistä vain. Tässä projektissa käytetty prosessori on nopeutensa puolesta kilpailukykyinen, ja siitä löytyy useita eri rajapintoja. Jatkossa tietokonekortille on myös tulossa WiMAX-tuki, joka lisää tukiaseman tulevaisuuden arvoa asiakkaalle. Projektiin valittu Freescalen MPC8321E-prosessori on PowerPC-arkkitehtuuriin perustuva ja juuri markkinoille ilmestynyt. Tämä toi mukanaan lisähaasteen, sillä kyseisestä prosessorista ei ollut vielä kaikkea tietoa saatavilla. Mekaniikka toi omat haasteensa mukanaan, sillä se rajoitti piirilevyn koonniin, että ylimääräistä piirilevytilaa ei juurikaan jäänyt. Tämän takia esimerkiksi DDR-muistit olivat haastavia reitittää, sillä muistivetojen on oltava melko samanpituisia keskenään. Käyttöjärjestelmänä projektissa käytetään Linuxia. Suunnittelu alkoi keväällä 2007 ja toimiva prototyyppi oli valmis alkusyksystä. Prototyypin testaus osoitti, että tietokonekortti kykenee täyttämään kaikki asiakkaan vaatimukset. Prototyypin testauksessa löytyneet viat ja optimoinnit on tarkoitus korjata tuotantomalliin, joten se antaa hyvän pohjan jatkosuunnittelua varten.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper aims to better understand the development of students’ learning processes when participating actively in a specific Computer Supported Collaborative Learning system called KnowCat. To this end, a longitudinal case study was designed, in which eighteen university students took part in a 12-month (two semesters) learning project. During this time period, the students followed an instructional process, using some elements of KnowCat (KnowCat key features) design to support and improve their interaction processes, especially peer learning processes. Our research involved both supervising the students’ collaborative learning processes throughout the learning project and focusing our analysis on the qualitative evolution of the students’ interaction processes and on the development of metacognitive learning processes. The results of the current research reveal that the instructional application of the CSCL-KnowCat system may favour and improve the development of the students’ metacognitive learning processes. Additionally, the implications of the design of computer supported collaborative learning networks and pedagogical issues are discussed in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Erythroid burst forming units (BFU-E) are proliferative cells present in peripheral blood and bone marrow which may be precursors of the erythroid colony forming cell found in the bone marrow. To examine the possible role of monocyte-macrophages in the modulation of erythropoiesis, the effect of monocytes on peripheral blood BFU-E proliferation in response to erythropoietin was investigated in the plasma clot culture system. Peripheral blood mononuclear cells from normal human donors were separated into four fractions. Fraction-I cells were obtained from the interface of Ficoll-Hypaque gradients (20-30% monocytes; 60-80% lymphocytes); fraction-II cells were fraction-I cells that were nonadherent to plastic (2-10% monocytes; 90-98% lymphocytes); fraction-III cells were obtained by incubation of fraction-II cells with carbonyl iron followed by Ficoll-Hypaque centrifugation (>99% lymphocytes); and fraction-IV cells represented the adherent population of fraction-II cells released from the plastic by lidocaine (>95% monocytes). When cells from these fractions were cultured in the presence of erythropoietin, the number of BFU-E-derived colonies was inversely proportional to the number of monocytes present (r = ¿0.96, P < 0.001). The suppressive effect of monocytes on BFU-E proliferation was confirmed by admixing autologous purified monocytes (fraction-IV cells) with fraction-III cells. Monocyte concentrations of ¿20% completely suppressed BFU-E activity. Reduction in the number of plated BFU-E by monocyte dilution could not account for these findings: a 15% reduction in the number of fraction-III cells plated resulted in only a 15% reduction in colony formation. These results indicate that monocyte-macrophages may play a significant role in the regulation of erythropoiesis and be involved in the pathogenesis of the hypoproliferative anemias associated with infection and certain neoplasia in which increased monocyte activity and monopoiesis also occur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Business Model Canvas design has evolved from being a paper-based activity to one that involves the use of dedicated computer-aided business model design tools. We propose a set of guidelines to help design more coherent business models. When combined with functionalities offered by CAD tools, they show great potential to improve business model design as an ongoing activity. However, in order to create complex solutions, it is necessary to compare basic business model design tasks, using a CAD system over its paper-based counterpart. To this end, we carried out an experiment to measure user perceptions of both solutions. Performance was evaluated by applying our guidelines to both solutions and then carrying out a comparison of business model designs. Although CAD did not outperform paper-based design, the results are very encouraging for the future of computer-aided business model design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8(+) T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, K D = ∼1 - 5 μM. Beyond the affinity threshold at K D < 1 μM we observed an attenuation in cellular function, in line with the "half-life" model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of plasminogen, tissue plasminogen activator (t-PA) and urokinase with a clinical strain of Helicobacter pylori was studied. Plasminogen bound to the surface of H. pylori cells in a concentration-dependent manner and could be activated to the enzymatic form, plasmin, by t-PA. Affinity chromatography assays revealed a plasminogen-binding protein of 58.9 kDa in water extracts of surface proteins. Surface-associated plasmin activity, detected with the chromogenic substrate CBS 00.65, was observed only when plasminogen and an exogenous activator were added to the cell suspension. The two physiologic plasminogen activators, t-PA and urokinase, were also shown to bind to and remain active on the surface of bacterial cells. epsilon-Aminocaproic acid caused partial inhibition of t-PA binding, suggesting that the kringle 2 structure of this activator is involved in the interaction with surface receptors. The activation of plasminogen by t-PA, but not urokinase, strongly depended on the presence of cells and a 25-fold enhancer effect on the initial velocity of activation by t-PA compared to urokinase was established. Furthermore, a relationship between cell concentration and the initial velocity of activation was demonstrated. These findings support the concept that plasminogen activation by t-PA on the bacterial surface is a surface-dependent reaction which offers catalytic advantages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.