919 resultados para Human Respiratory Cells


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiolabeled antibodies have shown promise for the treatment of lymphoma and for solid tumor targeting. Campath-1H is a humanized monoclonal antibody that reacts with the CD52 antigen present on human lymphoid and myeloid cells. Campath-1H is a gamma1 (G1) isotype that induces lymphopenia via an Fc-mediated mechanism(s). Isotype switches were engineered, and the resulting antibodies were expressed in NS0 mouse myeloma cells and biosynthetically radiolabeled with [35S]methionine. The forms included G1, G4, and a G4 variant that contained alanine substitutions at (EU numbering) Leu-235, Gly-237, and Glu-318. All isotypes bound antigen equivalently as assessed by target cell binding in vitro. The G4 variant had a greatly reduced capacity to interact with Fc receptor by virtue of reduced binding to THP-1 human myeloid cells and by a 1000-fold increase in EC50 to intermediate antibody-dependent cellular cytotoxicity. The pharmacokinetics of the isotypes were compared in CD-1 (nu/nu) mice bearing an experimental antigen-expressing tumor. The plasma half-life and tumor uptake were increased for the G4 variant. The G4 variant showed significantly less spleen, liver, and bone uptake but similar uptake in the lung, kidney, and stomach and lower tissue-to-blood ratios. Immunogenicity was assessed after repeated monthly administrations of unlabeled antibody in BALB/c mice. A 50% reduction in the incidence of anti-globulin response was observed for the G4 variant. These properties suggest that antibodies with reduced Fc receptor interaction merit additional study as potential targeting vehicles relative to other isotypes for radioimmunotherapy or situations where diminished normal tissue binding contributes to efficacy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major barrier to the design of immunotherapeutics and vaccines for cancer is the idiosyncratic nature of many tumor antigens and the possibility that T cells may be tolerant of broadly distributed antigens. We have devised an experimental strategy that exploits species differences in protein sequences to circumvent tolerance of high-affinity T cells. HLA transgenic mice were used to obtain cytotoxic T lymphocytes specific for peptides from the human p53 tumor-suppressor molecule presented in association with HLA-A2.1. Although such p53-specific cytotoxic T cells did not recognize nontransformed human cells, they were able to lyse a wide variety of human tumor cells lines, thus confirming the existence of broadly distributed determinants that may serve as targets for immunotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Binding of the lipid A portion of bacterial lipopolysaccharide (LPS) to leukocyte CD14 activates phagocytes and initiates the septic shock syndrome. Two lipid A analogs, lipid IVA and Rhodobacter sphaeroides lipid A (RSLA), have been described as LPS-receptor antagonists when tested with human phagocytes. In contrast, lipid IVA activated murine phagocytes, whereas RSLA was an LPS antagonist. Thus, these compounds displayed a species-specific pharmacology. To determine whether the species specificity of these LPS antagonists occurred as a result of interactions with CD14, the effects of lipid IVA and RSLA were examined by using human, mouse, and hamster cell lines transfected with murine or human CD14 cDNA expression vectors. These transfectants displayed sensitivities to lipid IVA and RSLA that reflected the sensitivities of macrophages of similar genotype (species) and were independent of the source of CD14 cDNA. For example, hamster macrophages and hamster fibroblasts transfected with either mouse or human-derived CD14 cDNA responded to lipid IVA and RSLA as LPS mimetics. Similarly, lipid IVA and RSLA acted as LPS antagonists in human phagocytes and human fibrosarcoma cells transfected with either mouse or human-derived CD14 cDNA. Therefore, the target of these LPS antagonists, which is encoded in the genomes of these cells, is distinct from CD14. Although the expression of CD14 is required for macrophage-like sensitivity to LPS, CD14 cannot discriminate between the lipid A moieties of these agents. We hypothesize that the target of the LPS antagonists is a lipid A recognition protein which functions as a signaling receptor that is triggered after interaction with CD14-bound LPS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytokines interleukin 2 (IL-2) and IL-15 have similar biological effects on T cells and bind common hematopoietin receptor subunits. Pathways that involve Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to be important for hematopoietin receptor signaling. In this study we identify the STAT proteins activated by IL-2 and IL-15 in human T cells. IL-2 and IL-15 rapidly induced the tyrosine phosphorylation of STAT3 and STAT5, and DNA-binding complexes containing STAT3 and STAT5 were rapidly activated by these cytokines in T cells. IL-4 induced tyrosine phosphorylation and activation of STAT3 but not STAT5. JAK1 and JAK3 were tyrosine-phosphorylated in response to IL-2 and IL-15. Hence, the JAK and STAT molecules that are activated in response to IL-2 and IL-15 are similar but differ from those induced by IL-4. These observations identify the STAT proteins activated by IL-2 and IL-15 and therefore define signaling pathways by which these T-cell growth factors may regulate gene transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several studies have established a link between blood coagulation and cancer, and more specifically between tissue factor (TF), a transmembrane protein involved in initiating blood coagulation, and tumor metastasis. In the study reported here, a murine model of human melanoma metastasis was used for two experiments. (i) The first experiment was designed to test the effect of varying the level of TF expression in human melanoma cells on their metastatic potential. Two matched sets of cloned human melanoma lines, one expressing a high level and the other a low level of the normal human TF molecule, were generated by retroviral-mediated transfections of a nonmetastatic parental line. The metastatic potential of the two sets of transfected lines was compared by injecting the tumor cells into the tail vein of severe combined immunodeficiency (SCID) mice and later examining the lungs and other tissues for tumor development. Metastatic tumors were detected in 86% of the mice injected with the high-TF lines and in 5% of the mice injected with the low-TF lines, indicating that a high TF level promotes metastasis of human melanoma in the SCID mouse model. This TF effect on metastasis occurs with i.v.-injected melanoma cells but does not occur with primary tumors formed from s.c.-injected melanoma cells, suggesting that TF acts at a late stage of metastasis, after tumor cells have escaped from the primary site and entered the blood. (ii) The second experiment was designed to analyze the mechanism by which TF promotes melanoma metastasis. The procedure involved testing the effect on metastasis of mutations in either the extracellular or cytoplasmic domains of the transmembrane TF molecule. The extracellular mutations introduced two amino acid substitutions that inhibited initiation by TF of the blood-coagulation cascade; the cytoplasmic mutation deleted most of the cytoplasmic domain without impairing the coagulation function of TF. Several human melanoma lines expressing high levels of either of the two mutant TF molecules were generated by retroviral-mediated transfection of the corresponding TF cDNA into the nonmetastatic parental melanoma line, and the metastatic potential of each transfected line was tested in the SCID mouse model. Metastases occurred in most mice injected with the melanoma lines expressing the extracellular TF mutant but were not detected in most mice injected with the melanoma lines expressing the cytoplasmic TF mutant. Results with the extracellular TF mutant indicate that the metastatic effect of TF in the SCID mouse model does not involve products of the coagulation cascade. Results with the cytoplasmic TF mutant indicate that the cytoplasmic domain of TF is important for the metastatic effect, suggesting that the TF could transduce a melanoma cell signal that promotes metastasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Telomere shortening and telomerase activation in human somatic cells have been implicated in cell immortalization and cellular senescence. To further study the role of telomerase in immortalization, we assayed telomere length and telomerase activity in primary mouse fibroblasts, in spontaneously immortalized cell clones, and in mouse tissues. In the primary cell cultures, telomere length decreased with increased cell doublings and telomerase activity was not detected. In contrast, in spontaneously immortalized clones, telomeres were maintained at a stable length and telomerase activity was present. To determine if telomere shortening occurs in vivo, we assayed for telomerase and telomere length in tissues from mice of different ages. Telomere length was similar among different tissues within a newborn mouse, whereas telomere length differed between tissues in an adult mouse. These findings suggest that there is tissue-specific regulation of mouse telomerase during development and aging in vivo. In contrast to human tissues, most mouse tissues had active telomerase. The presence of telomerase in these tissues may reflect the ease of immortalization of primary mouse cells relative to human cells in culture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retinoblastoma protein (Rb) is a target of viral oncoproteins. To explore the hypothesis that viral proteins may be structural mimics of cellular proteins, we have searched cDNA libraries for Rb-binding proteins. We report here the cloning of a cDNA for the protein RIZ from rat and human cells. RIZ is a 250-kDa nuclear protein containing eight zinc-finger motifs. It contains an Rb-binding motif that shares an antigenic epitope with the C terminus of E1A. A domain is conserved between RIZ and the PRDI-BF1/Blimp-1 differentiation factor. Other motifs of RIZ include putative GTPase and SH3 (src homology domain 3) domains. RIZ is preferentially expressed in both adult and embryonic rat neuroendocrine tissues. It is also expressed in human retinoblastoma cells and at low levels in all other human cell lines examined. While the function of RIZ is not yet clear, its structure and pattern of expression suggest a role for RIZ in transcriptional regulation during neuronal differentiation and pathogenesis of retinoblastoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large family of genes encodes proteins with RNA recognition motifs that are presumed to bind RNA and to function in posttranscriptional regulation. Neural-specific members of this family include elav, a gene required for correct differentiation and maintenance of neurons in Drosophila melanogaster, and a related gene, HuD, which is expressed in human neuronal cells. I have identified genes related to elav and HuD in Xenopus laevis, zebrafish, and mouse that define a family of four closely related vertebrate elav-like genes (elrA, elrB, elrC, and elrD) in fish, frogs, and mammals. In addition to protein sequence conservation, a segment of the 3'-untranslated sequence of elrD is also conserved, implying a functional role in elrD expression. In adult frogs, elrC and elrD are exclusively expressed in the brain, whereas elrB is expressed in brain, testis, and ovary. During Xenopus development, elrC and elrD RNAs are detected by late gastrula and late neurula stages, respectively, whereas a nervous system-specific elrB RNA species is expressed by early tadpole stage. Additional elrB transcripts are detected in the ovary and early embryo, demonstrating a maternal supply of mRNA and possibly of protein. These expression patterns suggest a role for different elav-like genes in early development and neuronal differentiation. Surprisingly, elrA is expressed in all adult tissues tested and at all times during development. Thus, the widely expressed elrA is expected to have a related function in all cells.