977 resultados para History -- Methodology
Resumo:
The anadromous Chinese sturgeon (Acipenser sinensis), mainly endemic to the Yangtze River in China, is an endangered fish species. The natural population has declined since the Gezhouba Dam blocked its migratory route to the spawning grounds in 1981. In the near future, the completion of the Three Gorges Dam, the world's largest hydroelectric project, may further impact this species by altering the water flow of the Yangtze River. Little is currently known about the population genetic structure of the Chinese sturgeon. In this study, DNA sequence data were determined from the control region (D-loop) of the mitochondrial genome of adult sturgeons (n = 106) that were collected between 1995-2000. The molecular data were used to investigate genetic variation, effective female population size and population history of the Chinese sturgeon in the Yangtze River. Our results indicate that the reduction in abundance did not change genetic variation of the Chinese sturgeon, and that the population underwent an expansion in the past. AMOVA analysis indicated that 98.7% of the genetic variability occurred within each year's spawning populations, the year of collection had little influence on the diversity of annual temporary samples. The relative large effective female population size (N-ef) indicates that good potential exists for the recovery of this species in the future. Strikingly, the ratio of N-ef to the census female population size (N-f) is unusually high (0.77-0.93). This may be the result of a current bottleneck in the population of the Chinese sturgeon that is likely caused by human intervention.
Resumo:
Golden monkey (Rhinopithecus roxellana), namely the snub-nosed monkey, is a well-known endangered primate, which distributes only in the central part of mainland China. As an effort to understand the current genetic status as well as population history of this species, we collected a sample of 32 individuals from four different regions, which cover the major habitat of this species. Forty-four allozyme loci were surveyed in our study by allozyme electrophoresis, none of which was found to be polymorphic. The void of polymorphism compared with that of other nonhuman primates is surprising particularly considering that the current population size is many times larger than that of some other endangered species. Since many independent loci are surveyed in this Study, the most plausible explanation for our observation is that the population has experienced a recent bottleneck. We used a coalescent approach to explore various scenarios of population bottleneck and concluded that the most recent bottleneck could have happened within the last 15,000 years. Moreover, the proposed simulation approach could be useful to researchers who need to analyze the non- or low-polymorphism data.
Resumo:
The Quaternary cold periods in the Northwestern Pacific are thought to have heavily influenced the amount and distribution of intraspecific genetic variation in marine fishes. To estimate the demographic history and genetic structure of Lateolabrax macula
Resumo:
The domestication of livestock represented a crucial step in human history. By using endogenous retroviruses as genetic markers, we found that sheep differentiated on the basis of their "retrotype" and morphological traits dispersed across Eurasia and Afr
Resumo:
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication(1,2). To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data(3). Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
Resumo:
Archaeological, anatomical, linguistic, and genetic data have suggested that there is an old and significant boundary between the populations of north and south China. We use three human genetic marker systems and one human-carried virus to examine the north/south distinction. We find no support for a major north/south division in these markers; rather, the marker patterns suggest simple isolation by distance.
Resumo:
The decipherment of the meager information provided by short fragments of ancient mitochondrial DNA (mtDNA) is notoriously difficult but is regarded as a most promising way toward reconstructing the past from the genetic perspective. By haplogroup-specific hypervariable segment (HVS) motif search and matching or near-matching with available modem data sets, most of the ancient mtDNAs can be tentatively assigned to haplogroups, which are often subcontinent specific. Further typing for mtDNA haplogroup-diagnostic coding region polymorphisms, however, is indispensable for establishing the geographic/genetic affinities of ancient samples with less ambiguity. In the present study, we sequenced a fragment (similar to 982 bp) of the mtDNA control region in 76 Han individuals from Taian, Shandong, China, and we combined these data with previously reported samples from Zibo and Qingdao, Shandong. The reanalysis of two previously published ancient mtDNA population data sets from Linzi (same province) then indicates that the ancient populations had features in common with the modem populations from south China rather than any specific affinity to the European mtDNA pool. Our results highlight that ancient mtDNA data obtained under different sampling schemes and subject to potential contamination can easily create the impression of drastic spatiotemporal changes in the genetic structure of a regional population during the past few thousand years if inappropriate methods of data analysis are employed.
Resumo:
Toxicological effects of Asulox-40 and Emisan-6 to eggs and early life history stages of Sarotherodon mossambicus were reported. 80% of egg hatching occurred in the controls, 1 p.p.m and 5 p.p.m concentrations of Asulox-40. 10 p.p.m. and 50 p.p.m. concentrations of the same toxicants had 70% and 60% hatchings while in Emisan-6 in the same concentrations the hatching were 70% and! 40%. In 100 p.p.m. concentration of both toxicants 20% incomplete hatching occurred. In Emisan-6 Lc 50 and Lc 100 values were recorded at 32 hand 96h respectively in 10 p.p.m. concentrations. In Asulox-40 the same values were recorded in 24h and 40h respectively at 50 p.p.m. concentration. The fish activity during the experimental period showed initial hyper activity. It was established that the Emisan-6 is more harmful to S. mossambicus than Asulox-40. The harmless concentrations of these chemicals were 1.2 p.p.m. for Asulox-40 and 0.6 p.p.m. for Emisan-6.
Resumo:
Fourteen species of penaeid shrimps with commercial value in Batan Bay and Tigbauan-Guimbal waters were identified as follows: Penaeus monodon, P.semisulcatus, P.japonicus, Metapenaeus ensis, M.burkenroadi, M.endeavouri, Metapenaeopsis palmensis, M.stridulans, Trachypenaeus fulvus, and Parapenaeus longipes. Among the 14 penaeids, P.semisulcatus, M.ensis and M.palmensis were found to be the dominant species within each genus. There are seven existing fishing gears for shrimping in the Batan Bay and Tigbauan-Guimbal waters: fish corrals, lift net, filter net, gill net, skimming net, baby trawler and commercial trawler. In general, female penaeids are larger than males. The largest P.monodon female measured was 81 mm in carapace length with 23 g in body weight. The largest male measuring 59 mm in carapace length with 119 g of body weight was caught in Batan Bay. Judging from spermatozoa occurrence on both sexes of P.monodon, the biological minimum size for male is 37 mm in carapace length and 49 mm for female. A total of 133 Penaeus postlarvae obtained from the offshore were identified by comparison with those reared in the laboratory. The postlarvae of P.japonicus-latisulcatus complex were quite dominant (60 . 2%), followed by P.semisulcatus (18 . 0%), and P.merguiensis-indicus complex (17 . 3%). The number of P.monodon postlarvae was relatively small (4 . 5%). The modal carapace length of P.monodon postlarvae from the offshore was 1 . 3 mm with three or four dorsal and no ventral spines on the rostrum, while P.monodon fry from the shoreline had 2 . 3 mm with five or six dorsal and one or two ventral spines.
Resumo:
Seven stages in the life history of the milkfish C. chanos , are recognized and suggested: A, embryonic; B, yolksac larval; C, larval; D, postlarval; E, juvenile; F, subadult; G. adult. An outline is presented of the life history. It is concluded that the milkfish, throughout the known stages of their life history are well adapted and equipped for optimal survival. High swimming performance, broad flexibility in feeding habits, high adaptability to a wide range of physicochemical conditions of the environment are but a few of the adaptations. The main driving force in all developmental stages is the evolutionary response to food distribution and availability followed by predation pressure.
Resumo:
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped superscaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000 - 40,000. Only 2% - 3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism ( SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.