995 resultados para Hiker Dice. Algoritmo Exato. Algoritmos Heurísticos
Resumo:
El objetivo principal de esta tesis es el desarrollo de herramientas numéricas basadas en técnicas de onda completa para el diseño asistido por ordenador (Computer-Aided Design,‘CAD’) de dispositivos de microondas. En este contexto, se desarrolla una herramienta numérica basada en el método de los elementos finitos para el diseño y análisis de antenas impresas mediante algoritmos de optimización. Esta técnica consiste en dividir el análisis de una antena en dos partes. Una parte de análisis 3D que se realiza sólo una vez en cada punto de frecuencia de la banda de funcionamiento donde se sustituye una superficie que contiene la metalización del parche por puertas artificiales. En una segunda parte se inserta entre las puertas artificiales en la estructura 3D la superficie soportando una metalización y se procede un análisis 2D para caracterizar el comportamiento de la antena. La técnica propuesta en esta tesis se puede implementar en un algoritmo de optimización para definir el perfil de la antena que permite conseguir los objetivos del diseño. Se valida experimentalmente dicha técnica empleándola en el diseño de antenas impresas de banda ancha para diferentes aplicaciones mediante la optimización del perfil de los parches. También, se desarrolla en esta tesis un procedimiento basado en el método de descomposición de dominio y el método de los elementos finitos para el diseño de dispositivos pasivos de microonda. Se utiliza este procedimiento en particular para el diseño y sintonía de filtros de microondas. En la primera etapa de su aplicación se divide la estructura que se quiere analizar en subdominios aplicando el método de descomposición de dominio, este proceso permite analizar cada segmento por separado utilizando el método de análisis adecuado dado que suele haber subdominios que se pueden analizar mediante métodos analíticos por lo que el tiempo de análisis es más reducido. Se utilizan métodos numéricos para analizar los subdominios que no se pueden analizar mediante métodos analíticos. En esta tesis, se utiliza el método de los elementos finitos para llevar a cabo el análisis. Además de la descomposición de dominio, se aplica un proceso de barrido en frecuencia para reducir los tiempos del análisis. Como método de orden reducido se utiliza la técnica de bases reducidas. Se ha utilizado este procedimiento para diseñar y sintonizar varios ejemplos de filtros con el fin de comprobar la validez de dicho procedimiento. Los resultados obtenidos demuestran la utilidad de este procedimiento y confirman su rigurosidad, precisión y eficiencia en el diseño de filtros de microondas. ABSTRACT The main objective of this thesis is the development of numerical tools based on full-wave techniques for computer-aided design ‘CAD’ of microwave devices. In this context, a numerical technique based on the finite element method ‘FEM’ for the design and analysis of printed antennas using optimization algorithms has been developed. The proposed technique consists in dividing the analysis of the antenna in two stages. In the first stage, the regions of the antenna which do not need to be modified during the CAD process are initially characterized only once from their corresponding matrix transfer function (Generalized Admittance matrix, ‘GAM’). The regions which will be modified are defined as artificial ports, precisely the regions which will contain the conducting surfaces of the printed antenna. In a second stage, the contour shape of the conducting surfaces of the printed antenna is iteratively modified in order to achieve a desired electromagnetic performance of the antenna. In this way, a new GAM of the radiating device which takes into account each printed antenna shape is computed after each iteration. The proposed technique can be implemented with a genetic algorithm to achieve the design objectives. This technique is validated experimentally and applied to the design of wideband printed antennas for different applications by optimizing the shape of the radiating device. In addition, a procedure based on the domain decomposition method and the finite element method has been developed for the design of microwave passive devices. In particular, this procedure can be applied to the design and tune of microwave filters. In the first stage of its implementation, the structure to be analyzed is divided into subdomains using the domain decomposition method; this process allows each subdomains can be analyzed separately using suitable analysis method, since there is usually subdomains that can be analyzed by analytical methods so that the time of analysis is reduced. For analyzing the subdomains that cannot be analyzed by analytical methods, we use the numerical methods. In this thesis, the FEM is used to carry out the analysis. Furthermore the decomposition of the domain, a frequency sweep process is applied to reduce analysis times. The reduced order model as the reduced basis technique is used in this procedure. This procedure is applied to the design and tune of several examples of microwave filters in order to check its validity. The obtained results allow concluding the usefulness of this procedure and confirming their thoroughness, accuracy and efficiency for the design of microwave filters.
Resumo:
Several groups all over the world are researching in several ways to render 3D sounds. One way to achieve this is to use Head Related Transfer Functions (HRTFs). These measurements contain the Frequency Response of the human head and torso for each angle. Some years ago, was only possible to measure these Frequency Responses only in the horizontal plane. Nowadays, several improvements have made possible to measure and use 3D data for this purpose. The problem was that the groups didn't have a standard format file to store the data. That was a problem when a third part wanted to use some different HRTFs for 3D audio rendering. Every of them have different ways to store the data. The Spatially Oriented Format for Acoustics or SOFA was created to provide a solution to this problem. It is a format definition to unify all the previous different ways of storing any kind of acoustics data. At the moment of this project they have defined some basis for the format and some recommendations to store HRTFs. It is actually under development, so several changes could come. The SOFA[1] file format uses a numeric container called netCDF[2], specifically the Enhaced data model described in netCDF 4 that is based on HDF5[3]. The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms. The SSR was developed at the Quality and Usability Lab at TU Berlin and is now further developed at the Institut für Nachrichtentechnik at Universität Rostock [4]. This project is intended to be an introduction to the use of SOFA files, providing a C++ API to manipulate them and adapt the binaural renderer of the SSR for working with the SOFA format. RESUMEN. El SSR (SoundScape Renderer) es un programa que está siendo desarrollado actualmente por la Universität Rostock, y previamente por la Technische Universität Berlin. El SSR es una herramienta diseñada para la reproducción y renderización de audio 2D en tiempo real. Para ello utiliza diversos algoritmos, algunos orientados a sistemas formados por arrays de altavoces en diferentes configuraciones y otros algoritmos diseñados para cascos. El principal objetivo de este proyecto es dotar al SSR de la capacidad de renderizar sonidos binaurales en 3D. Este proyecto está centrado en el binaural renderer del SSR. Este algoritmo se basa en el uso de HRTFs (Head Related Transfer Function). Las HRTFs representan la función de transferencia del sistema formado por la cabeza y el torso del oyente. Esta función es medida desde diferentes ángulos. Con estos datos el binaural renderer puede generar audio en tiempo real simulando la posición de diferentes fuentes. Para poder incluir una base de datos con HRTFs en 3D se ha hecho uso del nuevo formato SOFA (Spatially Oriented Format for Acoustics). Este nuevo formato se encuentra en una fase bastante temprana de su desarrollo. Está pensado para servir como formato estándar para almacenar HRTFs y cualquier otro tipo de medidas acústicas, ya que actualmente cada laboratorio cuenta con su propio formato de almacenamiento y esto hace bastante difícil usar varias bases de datos diferentes en un mismo proyecto. El formato SOFA hace uso del contenedor numérico netCDF, que a su vez esta basado en un contenedor más básico llamado HRTF-5. Para poder incluir el formato SOFA en el binaural renderer del SSR se ha desarrollado una API en C++ para poder crear y leer archivos SOFA con el fin de utilizar los datos contenidos en ellos dentro del SSR.
Resumo:
El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.
Resumo:
En la actualidad, el desarrollo de las tecnologías de adquisición y análisis de imagen médica permiten la implementación de aplicaciones con fines clínicos y de investigación que resulten en un mejor conocimiento de la fisiopatología humana y, en la práctica, un mejor tratamiento a los pacientes. Utilizando imágenes de resonancia magnética nuclear y de tomografía por emisión de fotón único (SPECT), se han desarrollado los algoritmos de registro necesarios para ser integrados en dos procedimientos de uso clínico. En el primero de estos procedimientos, el objetivo es la localización del foco epileptogénico en casos de epilepsia fármacorresistente mediante el protocolo denominado SISCOM. En este contexto, se ha implementado un algoritmo de registro rígido para el corregistro de Resonancia Magnética e imagen SPECT interictal, así como un algoritmo de registro afín que ayuda a la segmentación de imágenes SPECT. Así mismo, se han validado y caracterizado ambos algoritmos y la librería sobre la que se han desarrollado. El segundo procedimiento tiene por objeto la cuantificación de neurotransmisores dopaminérgicos para el diagnóstico de Enfermedad de Parkinson. En este contexto, se ha implementado un algoritmo de registro SPECT-template necesario para realizar correctamente la cuantificación.
Resumo:
La correcta validación y evaluación de cualquier algoritmo de registro incluido en la línea de procesamiento de cualquier aplicación clínica, es fundamental para asegurar la calidad y fiabilidad de los resultados obtenidos con ellas. Ambas características son imprescindibles, además, cuando dicha aplicación se encuentra en el área de la planificación quirúrgica, en la que las decisiones médicas influyen claramente en la invasividad sobre el paciente. El registro de imágenes es un proceso de alineamiento entre dos o más de éstas de forma que las características comunes se encuentren en el mismo punto del espacio. Este proceso, por tanto, se hace imprescindible en aquellas aplicaciones en las que existe la necesidad de combinar la información disponible en diferentes modalidades (fusión de imágenes) o bien la comparación de imágenes intra-modalidad tomadas de diferentes pacientes o en diferentes momentos. En el presente Trabajo Fin de Máster, se desarrolla un conjunto de herramientas para la evaluación de algoritmos de registro y se evalúan en la aplicación sobre imágenes multimodalidad a través de dos metodologías: 1) el uso de imágenes cuya alineación se conoce a priori a través de unos marcadores fiables (fiducial markers) eliminados de las imágenes antes del proceso de validación; y 2) el uso de imágenes sintetizadas con las propiedades de cierta modalidad de interés, generadas en base a otra modalidad objetivo y cuya des-alineación es controlada y conocida a priori. Para la primera de las metodologías, se hizo uso de un proyecto (RIRE – Retrospective Image Registration Evaluation Project) ampliamente conocido y que asegura la fiabilidad de la validación al realizarse por terceros. En la segunda, se propone la utilización de una metodología de simulación de imágenes SPECT (Single Photon Emission Computed Tomography) a partir de imágenes de Resonancia Magnética (que es la referencia anatómica). Finalmente, se realiza la modularización del algoritmo de registro validado en la herramienta FocusDET, para la localización del Foco Epileptógeno (FE) en Epilepsia parcial intratable, sustituyendo a la versión anterior en la que el proceso de registro se encontraba embebido en dicho software, dificultando enormemente cualquier tarea de revisión, validación o evaluación.
Resumo:
This paper describes the objectives, contents learning methodology and results of an on-line course about History of Algorithms for engineering students of the Polytechnic University of Madrid. This course is conducted in a virtual environment based on Moodle, with an educational model centered at student which includes a detailed planning of learning activities. . Our experience indicates that this subject is is highly motivating for students and the virtual environment facilitates competencies development.
Resumo:
La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.
Resumo:
En el presente documento se hablará acerca del desarrollo de un proyecto para la mejora de un programa de análisis de señales; con ese fin, se hará uso de técnicas de optimización del software y de tecnologías de aceleración, mediante el aprovechamiento del paralelismo del programa. Además se hará un análisis de acerca del uso de dos tecnologías basadas en diferentes paradigmas de programación paralela; una mediante múltiples hilos con memoria compartida y la otra mediante el uso de GPUs como dispositivos de coprocesamiento. This paper will talk about the development of a Project to improve a program that does signals analysis; to that end, it will make use of software optimization techniques and acceleration technologies by exploiting parallelism in the program. In Addition will be done an analysis on the use of two technologies based on two different paradigms; one using multiple threads with shared memory and the other using GPU as co-processing devices.
Resumo:
En la última década ha aumentado en gran medida el interés por las redes móviles Ad Hoc. La naturaleza dinámica y sin infraestructura de estas redes, exige un nuevo conjunto de algoritmos y estrategias para proporcionar un servicio de comunicación fiable extremo a extremo. En el contexto de las redes móviles Ad Hoc, el encaminamiento surge como una de las áreas más interesantes para transmitir información desde una fuente hasta un destino, con la calidad de servicio de extremo a extremo. Debido a las restricciones inherentes a las redes móviles, los modelos de encaminamiento tradicionales sobre los que se fundamentan las redes fijas, no son aplicables a las redes móviles Ad Hoc. Como resultado, el encaminamiento en redes móviles Ad Hoc ha gozado de una gran atención durante los últimos años. Esto ha llevado al acrecentamiento de numerosos protocolos de encaminamiento, tratando de cubrir con cada uno de ellos las necesidades de los diferentes tipos de escenarios. En consecuencia, se hace imprescindible estudiar el comportamiento de estos protocolos bajo configuraciones de red variadas, con el fin de ofrecer un mejor encaminamiento respecto a los existentes. El presente trabajo de investigación muestra precisamente una solución de encaminamiento en las redes móviles Ad Hoc. Dicha solución se basa en el mejoramiento de un algoritmo de agrupamiento y la creación de un modelo de encaminamiento; es decir, un modelo que involucra la optimización de un protocolo de enrutamiento apoyado de un mecanismo de agrupación. El algoritmo mejorado, denominado GMWCA (Group Management Weighted Clustering Algorithm) y basado en el WCA (Weighted Clustering Algorithm), permite calcular el mejor número y tamaño de grupos en la red. Con esta mejora se evitan constantes reagrupaciones y que los jefes de clústeres tengan más tiempo de vida intra-clúster y por ende una estabilidad en la comunicación inter-clúster. En la tesis se detallan las ventajas de nuestro algoritmo en relación a otras propuestas bajo WCA. El protocolo de enrutamiento Ad Hoc propuesto, denominado QoS Group Cluster Based Routing Protocol (QoSG-CBRP), utiliza como estrategia el empleo de clúster y jerarquías apoyada en el algoritmo de agrupamiento. Cada clúster tiene un jefe de clúster (JC), quien administra la información de enrutamiento y la envía al destino cuando esta fuera de su área de cobertura. Para evitar que haya constantes reagrupamientos y llamados al algoritmo de agrupamiento se consideró agregarle un jefe de cluster de soporte (JCS), el que asume las funciones del JC, siempre y cuando este haya roto el enlace con los otros nodos comunes del clúster por razones de alejamiento o por desgaste de batería. Matemáticamente y a nivel de algoritmo se han demostrado las mejoras del modelo propuesto, el cual ha involucrado el mejoramiento a nivel de algoritmo de clustering y del protocolo de enrutamiento. El protocolo QoSG-CBRP, se ha implementado en la herramienta de simulación Network Simulator 2 (NS2), con la finalidad de ser comparado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con un protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Estos protocolos fueron elegidos por ser los que mejor comportamiento presentaron dentro de sus categorías. Además de ofrecer un panorama general de los actuales protocolos de encaminamiento en redes Ad Hoc, este proyecto presenta un procedimiento integral para el análisis de capacidades de la propuesta del nuevo protocolo con respecto a otros, sobre redes que tienen un alto número de nodos. Estas prestaciones se miden en base al concepto de eficiencia de encaminamiento bajo parámetros de calidad de servicio (QoS), permitiendo establecer el camino más corto posible entre un nodo origen y un nodo destino. Con ese fin se han realizado simulaciones con diversos escenarios para responder a los objetivos de la tesis. La conclusiones derivadas del análisis de los resultados permiten evaluar cualitativamente las capacidades que presenta el protocolo dentro del modelo propuesto, al mismo tiempo que avizora un atractivo panorama en líneas futuras de investigación. ABSTRACT In the past decade, the interest in mobile Ad Hoc networks has greatly increased. The dynamic nature of these networks without infrastructure requires a new set of algorithms and strategies to provide a reliable end-to-end communication service. In the context of mobile Ad Hoc networks, routing emerges as one of the most interesting areas for transmitting information from a source to a destination, with the quality of service from end-to-end. Due to the constraints of mobile networks, traditional routing models that are based on fixed networks are not applicable to Ad Hoc mobile networks. As a result, the routing in mobile Ad Hoc networks has experienced great attention in recent years. This has led to the enhancement of many routing protocols, trying to cover with each one of them, the needs of different types of scenarios. Consequently, it is essential to study the behavior of these protocols under various network configurations, in order to provide a better routing scheme. Precisely, the present research shows a routing solution in mobile Ad Hoc networks. This solution is based on the improvement of a clustering algorithm, and the creation of a routing model, ie a model that involves optimizing a routing protocol with the support of a grouping mechanism. The improved algorithm called GMWCA (Group Management Weighted Clustering Algorithm) and based on the WCA (Weighted Clustering Algorithm), allows to calculate the best number and size of groups in the network. With this enhancement, constant regroupings are prevented and cluster heads are living longer intra-cluster lives and therefore stability in inter-cluster communication. The thesis details the advantages of our algorithm in relation to other proposals under WCA. The Ad Hoc routing protocol proposed, called QoS Group Cluster Based Routing Protocol (QoSG-CBRP), uses a cluster-employment strategy and hierarchies supported by the clustering algorithm. Each cluster has a cluster head (JC), who manages the routing information and sends it to the destination when is out of your coverage area. To avoid constant rearrangements and clustering algorithm calls, adding a support cluster head (JCS) was considered. The JCS assumes the role of the JC as long as JC has broken the link with the other nodes in the cluster for common restraining reasons or battery wear. Mathematically and at an algorithm level, the improvements of the proposed model have been showed, this has involved the improvement level clustering algorithm and the routing protocol. QoSG-CBRP protocol has been implemented in the simulation tool Network Simulator 2 (NS2), in order to be compared with the hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and with the reactive routing protocol Ad Hoc On Demand Distance Vector Routing (AODV). These protocols were chosen because they showed the best individual performance in their categories. In addition to providing an overview of existing routing protocols in Ad Hoc networks, this project presents a comprehensive procedure for capacity analysis of the proposed new protocol with respect to others on networks that have a high number of nodes. These benefits are measured based on the concept of routing efficiency under the quality of service (QoS) parameters, thus allowing for the shortest possible path between a source node and a destination node. To meet the objectives of the thesis, simulations have been performed with different scenarios. The conclusions derived from the analysis of the results to assess qualitatively the protocol capabilities presented in the proposed model, while an attractive scenario for future research appears.
Resumo:
Un método algorítmico de minimización será eficaz cuando esté concebido de manera que converja en todo momento y que, al llegar a la vecindad del mínimo, se adapte a la geografía de segundo grado para converger ya con rapidez cuadrática. El método de Davidon pertenece a esta clase.
Resumo:
Wireless sensor networks (WSNs) have shown their potentials in various applications, which bring a lot of benefits to users from both research and industrial areas. For many setups, it is envisioned thatWSNs will consist of tens to hundreds of nodes that operate on small batteries. However due to the diversity of the deployed environments and resource constraints on radio communication, sensing ability and energy supply, it is a very challenging issue to plan optimized WSN topology and predict its performance before real deployment. During the network planning phase, the connectivity, coverage, cost, network longevity and service quality should all be considered. Therefore it requires designers coping with comprehensive and interdisciplinary knowledge, including networking, radio engineering, embedded system and so on, in order to efficiently construct a reliable WSN for any specific types of environment. Nowadays there is still a lack of the analysis and experiences to guide WSN designers to efficiently construct WSN topology successfully without many trials. Therefore, simulation is a feasible approach to the quantitative analysis of the performance of wireless sensor networks. However the existing planning algorithms and tools, to some extent, have serious limitations to practically design reliable WSN topology: Only a few of them tackle the 3D deployment issue, and an overwhelming number of works are proposed to place devices in 2D scheme. Without considering the full dimension, the impacts of environment to the performance of WSN are not completely studied, thus the values of evaluated metrics such as connectivity and sensing coverage are not sufficiently accurate to make proper decision. Even fewer planning methods model the sensing coverage and radio propagation by considering the realistic scenario where obstacles exist. Radio signals propagate with multi-path phenomenon in the real world, in which direct paths, reflected paths and diffracted paths contribute to the received signal strength. Besides, obstacles between the path of sensor and objects might block the sensing signals, thus create coverage hole in the application. None of the existing planning algorithms model the network longevity and packet delivery capability properly and practically. They often employ unilateral and unrealistic formulations. The optimization targets are often one-sided in the current works. Without comprehensive evaluation on the important metrics, the performance of planned WSNs can not be reliable and entirely optimized. Modeling of environment is usually time consuming and the cost is very high, while none of the current works figure out any method to model the 3D deployment environment efficiently and accurately. Therefore many researchers are trapped by this issue, and their algorithms can only be evaluated in the same scenario, without the possibility to test the robustness and feasibility for implementations in different environments. In this thesis, we propose a novel planning methodology and an intelligent WSN planning tool to assist WSN designers efficiently planning reliable WSNs. First of all, a new method is proposed to efficiently and automatically model the 3D indoor and outdoor environments. To the best of our knowledge, this is the first time that the advantages of image understanding algorithm are applied to automatically reconstruct 3D outdoor and indoor scenarios for signal propagation and network planning purpose. The experimental results indicate that the proposed methodology is able to accurately recognize different objects from the satellite images of the outdoor target regions and from the scanned floor plan of indoor area. Its mechanism offers users a flexibility to reconstruct different types of environment without any human interaction. Thereby it significantly reduces human efforts, cost and time spent on reconstructing a 3D geographic database and allows WSN designers concentrating on the planning issues. Secondly, an efficient ray-tracing engine is developed to accurately and practically model the radio propagation and sensing signal on the constructed 3D map. The engine contributes on efficiency and accuracy to the estimated results. By using image processing concepts, including the kd-tree space division algorithm and modified polar sweep algorithm, the rays are traced efficiently without detecting all the primitives in the scene. The radio propagation model iv is proposed, which emphasizes not only the materials of obstacles but also their locations along the signal path. The sensing signal of sensor nodes, which is sensitive to the obstacles, is benefit from the ray-tracing algorithm via obstacle detection. The performance of this modelling method is robust and accurate compared with conventional methods, and experimental results imply that this methodology is suitable for both outdoor urban scenes and indoor environments. Moreover, it can be applied to either GSM communication or ZigBee protocol by varying frequency parameter of the radio propagation model. Thirdly, WSN planning method is proposed to tackle the above mentioned challenges and efficiently deploy reliable WSNs. More metrics (connectivity, coverage, cost, lifetime, packet latency and packet drop rate) are modeled more practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions accordingly, and the results are more comprehensively optimized compared with other state-of-the-art algorithms. iMOST is developed by integrating the introduced algorithms, to assist WSN designers efficiently planning reliable WSNs for different configurations. The abbreviated name iMOST stands for an Intelligent Multi-objective Optimization Sensor network planning Tool. iMOST contributes on: (1) Convenient operation with a user-friendly vision system; (2) Efficient and automatic 3D database reconstruction and fast 3D objects design for both indoor and outdoor environments; (3) It provides multiple multi-objective optimized 3D deployment solutions and allows users to configure the network properties, hence it can adapt to various WSN applications; (4) Deployment solutions in the 3D space and the corresponding evaluated performance are visually presented to users; and (5) The Node Placement Module of iMOST is available online as well as the source code of the other two rebuilt heuristics. Therefore WSN designers will be benefit from v this tool on efficiently constructing environment database, practically and efficiently planning reliable WSNs for both outdoor and indoor applications. With the open source codes, they are also able to compare their developed algorithms with ours to contribute to this academic field. Finally, solid real results are obtained for both indoor and outdoor WSN planning. Deployments have been realized for both indoor and outdoor environments based on the provided planning solutions. The measured results coincide well with the estimated results. The proposed planning algorithm is adaptable according to the WSN designer’s desirability and configuration, and it offers flexibility to plan small and large scale, indoor and outdoor 3D deployments. The thesis is organized in 7 chapters. In Chapter 1, WSN applications and motivations of this work are introduced, the state-of-the-art planning algorithms and tools are reviewed, challenges are stated out and the proposed methodology is briefly introduced. In Chapter 2, the proposed 3D environment reconstruction methodology is introduced and its performance is evaluated for both outdoor and indoor environment. The developed ray-tracing engine and proposed radio propagation modelling method are described in details in Chapter 3, their performances are evaluated in terms of computation efficiency and accuracy. Chapter 4 presents the modelling of important metrics of WSNs and the proposed multi-objective optimization planning algorithm, the performance is compared with the other state-of-the-art planning algorithms. The intelligent WSN planning tool iMOST is described in Chapter 5. RealWSN deployments are prosecuted based on the planned solutions for both indoor and outdoor scenarios, important data are measured and results are analysed in Chapter 6. Chapter 7 concludes the thesis and discusses about future works. vi Resumen en Castellano Las redes de sensores inalámbricas (en inglés Wireless Sensor Networks, WSNs) han demostrado su potencial en diversas aplicaciones que aportan una gran cantidad de beneficios para el campo de la investigación y de la industria. Para muchas configuraciones se prevé que las WSNs consistirán en decenas o cientos de nodos que funcionarán con baterías pequeñas. Sin embargo, debido a la diversidad de los ambientes para desplegar las redes y a las limitaciones de recursos en materia de comunicación de radio, capacidad de detección y suministro de energía, la planificación de la topología de la red y la predicción de su rendimiento es un tema muy difícil de tratar antes de la implementación real. Durante la fase de planificación del despliegue de la red se deben considerar aspectos como la conectividad, la cobertura, el coste, la longevidad de la red y la calidad del servicio. Por lo tanto, requiere de diseñadores con un amplio e interdisciplinario nivel de conocimiento que incluye la creación de redes, la ingeniería de radio y los sistemas embebidos entre otros, con el fin de construir de manera eficiente una WSN confiable para cualquier tipo de entorno. Hoy en día todavía hay una falta de análisis y experiencias que orienten a los diseñadores de WSN para construir las topologías WSN de manera eficiente sin realizar muchas pruebas. Por lo tanto, la simulación es un enfoque viable para el análisis cuantitativo del rendimiento de las redes de sensores inalámbricos. Sin embargo, los algoritmos y herramientas de planificación existentes tienen, en cierta medida, serias limitaciones para diseñar en la práctica una topología fiable de WSN: Sólo unos pocos abordan la cuestión del despliegue 3D mientras que existe una gran cantidad de trabajos que colocan los dispositivos en 2D. Si no se analiza la dimensión completa (3D), los efectos del entorno en el desempeño de WSN no se estudian por completo, por lo que los valores de los parámetros evaluados, como la conectividad y la cobertura de detección, no son lo suficientemente precisos para tomar la decisión correcta. Aún en menor medida los métodos de planificación modelan la cobertura de los sensores y la propagación de la señal de radio teniendo en cuenta un escenario realista donde existan obstáculos. Las señales de radio en el mundo real siguen una propagación multicamino, en la que los caminos directos, los caminos reflejados y los caminos difractados contribuyen a la intensidad de la señal recibida. Además, los obstáculos entre el recorrido del sensor y los objetos pueden bloquear las señales de detección y por lo tanto crear áreas sin cobertura en la aplicación. Ninguno de los algoritmos de planificación existentes modelan el tiempo de vida de la red y la capacidad de entrega de paquetes correctamente y prácticamente. A menudo se emplean formulaciones unilaterales y poco realistas. Los objetivos de optimización son a menudo tratados unilateralmente en los trabajos actuales. Sin una evaluación exhaustiva de los parámetros importantes, el rendimiento previsto de las redes inalámbricas de sensores no puede ser fiable y totalmente optimizado. Por lo general, el modelado del entorno conlleva mucho tiempo y tiene un coste muy alto, pero ninguno de los trabajos actuales propone algún método para modelar el entorno de despliegue 3D con eficiencia y precisión. Por lo tanto, muchos investigadores están limitados por este problema y sus algoritmos sólo se pueden evaluar en el mismo escenario, sin la posibilidad de probar la solidez y viabilidad para las implementaciones en diferentes entornos. En esta tesis, se propone una nueva metodología de planificación así como una herramienta inteligente de planificación de redes de sensores inalámbricas para ayudar a los diseñadores a planificar WSNs fiables de una manera eficiente. En primer lugar, se propone un nuevo método para modelar demanera eficiente y automática los ambientes interiores y exteriores en 3D. Según nuestros conocimientos hasta la fecha, esta es la primera vez que las ventajas del algoritmo de _image understanding_se aplican para reconstruir automáticamente los escenarios exteriores e interiores en 3D para analizar la propagación de la señal y viii la planificación de la red. Los resultados experimentales indican que la metodología propuesta es capaz de reconocer con precisión los diferentes objetos presentes en las imágenes satelitales de las regiones objetivo en el exterior y de la planta escaneada en el interior. Su mecanismo ofrece a los usuarios la flexibilidad para reconstruir los diferentes tipos de entornos sin ninguna interacción humana. De este modo se reduce considerablemente el esfuerzo humano, el coste y el tiempo invertido en la reconstrucción de una base de datos geográfica con información 3D, permitiendo así que los diseñadores se concentren en los temas de planificación. En segundo lugar, se ha desarrollado un motor de trazado de rayos (en inglés ray tracing) eficiente para modelar con precisión la propagación de la señal de radio y la señal de los sensores en el mapa 3D construido. El motor contribuye a la eficiencia y la precisión de los resultados estimados. Mediante el uso de los conceptos de procesamiento de imágenes, incluyendo el algoritmo del árbol kd para la división del espacio y el algoritmo _polar sweep_modificado, los rayos se trazan de manera eficiente sin la detección de todas las primitivas en la escena. El modelo de propagación de radio que se propone no sólo considera los materiales de los obstáculos, sino también su ubicación a lo largo de la ruta de señal. La señal de los sensores de los nodos, que es sensible a los obstáculos, se ve beneficiada por la detección de objetos llevada a cabo por el algoritmo de trazado de rayos. El rendimiento de este método de modelado es robusto y preciso en comparación con los métodos convencionales, y los resultados experimentales indican que esta metodología es adecuada tanto para escenas urbanas al aire libre como para ambientes interiores. Por otra parte, se puede aplicar a cualquier comunicación GSM o protocolo ZigBee mediante la variación de la frecuencia del modelo de propagación de radio. En tercer lugar, se propone un método de planificación de WSNs para hacer frente a los desafíos mencionados anteriormente y desplegar redes de sensores fiables de manera eficiente. Se modelan más parámetros (conectividad, cobertura, coste, tiempo de vida, la latencia de paquetes y tasa de caída de paquetes) en comparación con otros trabajos. Especialmente el método de trazado de rayos 3D se utiliza para modelar el enlace de radio y señal de los sensores que son sensibles a la obstrucción de obstáculos; el enrutamiento de la red se construye utilizando el protocolo AODV; la longevidad de la red, retardo de paquetes ix y tasa de abandono de paquetes se obtienen a través de la simulación de eventos prácticos en el simulador WSNet, y según nuestros conocimientos hasta la fecha, es la primera vez que simulador de red está implicado en un algoritmo de planificación. Por otra parte, se ha desarrollado un algoritmo de optimización multi-objetivo para satisfacer las características de las redes inalámbricas de sensores. La capacidad de proporcionar múltiples soluciones optimizadas de forma simultánea permite a los usuarios tomar sus propias decisiones en consecuencia, obteniendo mejores resultados en comparación con otros algoritmos del estado del arte. iMOST se desarrolla mediante la integración de los algoritmos presentados, para ayudar de forma eficiente a los diseñadores en la planificación de WSNs fiables para diferentes configuraciones. El nombre abreviado iMOST (Intelligent Multi-objective Optimization Sensor network planning Tool) representa una herramienta inteligente de planificación de redes de sensores con optimización multi-objetivo. iMOST contribuye en: (1) Operación conveniente con una interfaz de fácil uso, (2) Reconstrucción eficiente y automática de una base de datos con información 3D y diseño rápido de objetos 3D para ambientes interiores y exteriores, (3) Proporciona varias soluciones de despliegue optimizadas para los multi-objetivo en 3D y permite a los usuarios configurar las propiedades de red, por lo que puede adaptarse a diversas aplicaciones de WSN, (4) las soluciones de implementación en el espacio 3D y el correspondiente rendimiento evaluado se presentan visualmente a los usuarios, y (5) El _Node Placement Module_de iMOST está disponible en línea, así como el código fuente de las otras dos heurísticas de planificación. Por lo tanto los diseñadores WSN se beneficiarán de esta herramienta para la construcción eficiente de la base de datos con información del entorno, la planificación práctica y eficiente de WSNs fiables tanto para aplicaciones interiores y exteriores. Con los códigos fuente abiertos, son capaces de comparar sus algoritmos desarrollados con los nuestros para contribuir a este campo académico. Por último, se obtienen resultados reales sólidos tanto para la planificación de WSN en interiores y exteriores. Los despliegues se han realizado tanto para ambientes de interior y como para ambientes de exterior utilizando las soluciones de planificación propuestas. Los resultados medidos coinciden en gran medida con los resultados estimados. El algoritmo de planificación x propuesto se adapta convenientemente al deiseño de redes de sensores inalámbricas, y ofrece flexibilidad para planificar los despliegues 3D a pequeña y gran escala tanto en interiores como en exteriores. La tesis se estructura en 7 capítulos. En el Capítulo 1, se presentan las aplicaciones de WSN y motivaciones de este trabajo, se revisan los algoritmos y herramientas de planificación del estado del arte, se presentan los retos y se describe brevemente la metodología propuesta. En el Capítulo 2, se presenta la metodología de reconstrucción de entornos 3D propuesta y su rendimiento es evaluado tanto para espacios exteriores como para espacios interiores. El motor de trazado de rayos desarrollado y el método de modelado de propagación de radio propuesto se describen en detalle en el Capítulo 3, evaluándose en términos de eficiencia computacional y precisión. En el Capítulo 4 se presenta el modelado de los parámetros importantes de las WSNs y el algoritmo de planificación de optimización multi-objetivo propuesto, el rendimiento se compara con los otros algoritmos de planificación descritos en el estado del arte. La herramienta inteligente de planificación de redes de sensores inalámbricas, iMOST, se describe en el Capítulo 5. En el Capítulo 6 se llevan a cabo despliegues reales de acuerdo a las soluciones previstas para los escenarios interiores y exteriores, se miden los datos importantes y se analizan los resultados. En el Capítulo 7 se concluye la tesis y se discute acerca de los trabajos futuros.
Resumo:
El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.
Resumo:
La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.
Resumo:
Esta tesis doctoral se centra principalmente en técnicas de ataque y contramedidas relacionadas con ataques de canal lateral (SCA por sus siglas en inglés), que han sido propuestas dentro del campo de investigación académica desde hace 17 años. Las investigaciones relacionadas han experimentado un notable crecimiento en las últimas décadas, mientras que los diseños enfocados en la protección sólida y eficaz contra dichos ataques aún se mantienen como un tema de investigación abierto, en el que se necesitan iniciativas más confiables para la protección de la información persona de empresa y de datos nacionales. El primer uso documentado de codificación secreta se remonta a alrededor de 1700 B.C., cuando los jeroglíficos del antiguo Egipto eran descritos en las inscripciones. La seguridad de la información siempre ha supuesto un factor clave en la transmisión de datos relacionados con inteligencia diplomática o militar. Debido a la evolución rápida de las técnicas modernas de comunicación, soluciones de cifrado se incorporaron por primera vez para garantizar la seguridad, integridad y confidencialidad de los contextos de transmisión a través de cables sin seguridad o medios inalámbricos. Debido a las restricciones de potencia de cálculo antes de la era del ordenador, la técnica de cifrado simple era un método más que suficiente para ocultar la información. Sin embargo, algunas vulnerabilidades algorítmicas pueden ser explotadas para restaurar la regla de codificación sin mucho esfuerzo. Esto ha motivado nuevas investigaciones en el área de la criptografía, con el fin de proteger el sistema de información ante sofisticados algoritmos. Con la invención de los ordenadores se ha acelerado en gran medida la implementación de criptografía segura, que ofrece resistencia eficiente encaminada a obtener mayores capacidades de computación altamente reforzadas. Igualmente, sofisticados cripto-análisis han impulsado las tecnologías de computación. Hoy en día, el mundo de la información ha estado involucrado con el campo de la criptografía, enfocada a proteger cualquier campo a través de diversas soluciones de cifrado. Estos enfoques se han fortalecido debido a la unificación optimizada de teorías matemáticas modernas y prácticas eficaces de hardware, siendo posible su implementación en varias plataformas (microprocesador, ASIC, FPGA, etc.). Las necesidades y requisitos de seguridad en la industria son las principales métricas de conducción en el diseño electrónico, con el objetivo de promover la fabricación de productos de gran alcance sin sacrificar la seguridad de los clientes. Sin embargo, una vulnerabilidad en la implementación práctica encontrada por el Prof. Paul Kocher, et al en 1996 implica que un circuito digital es inherentemente vulnerable a un ataque no convencional, lo cual fue nombrado posteriormente como ataque de canal lateral, debido a su fuente de análisis. Sin embargo, algunas críticas sobre los algoritmos criptográficos teóricamente seguros surgieron casi inmediatamente después de este descubrimiento. En este sentido, los circuitos digitales consisten típicamente en un gran número de celdas lógicas fundamentales (como MOS - Metal Oxide Semiconductor), construido sobre un sustrato de silicio durante la fabricación. La lógica de los circuitos se realiza en función de las innumerables conmutaciones de estas células. Este mecanismo provoca inevitablemente cierta emanación física especial que puede ser medida y correlacionada con el comportamiento interno del circuito. SCA se puede utilizar para revelar datos confidenciales (por ejemplo, la criptografía de claves), analizar la arquitectura lógica, el tiempo e incluso inyectar fallos malintencionados a los circuitos que se implementan en sistemas embebidos, como FPGAs, ASICs, o tarjetas inteligentes. Mediante el uso de la comparación de correlación entre la cantidad de fuga estimada y las fugas medidas de forma real, información confidencial puede ser reconstruida en mucho menos tiempo y computación. Para ser precisos, SCA básicamente cubre una amplia gama de tipos de ataques, como los análisis de consumo de energía y radiación ElectroMagnética (EM). Ambos se basan en análisis estadístico y, por lo tanto, requieren numerosas muestras. Los algoritmos de cifrado no están intrínsecamente preparados para ser resistentes ante SCA. Es por ello que se hace necesario durante la implementación de circuitos integrar medidas que permitan camuflar las fugas a través de "canales laterales". Las medidas contra SCA están evolucionando junto con el desarrollo de nuevas técnicas de ataque, así como la continua mejora de los dispositivos electrónicos. Las características físicas requieren contramedidas sobre la capa física, que generalmente se pueden clasificar en soluciones intrínsecas y extrínsecas. Contramedidas extrínsecas se ejecutan para confundir la fuente de ataque mediante la integración de ruido o mala alineación de la actividad interna. Comparativamente, las contramedidas intrínsecas están integradas en el propio algoritmo, para modificar la aplicación con el fin de minimizar las fugas medibles, o incluso hacer que dichas fugas no puedan ser medibles. Ocultación y Enmascaramiento son dos técnicas típicas incluidas en esta categoría. Concretamente, el enmascaramiento se aplica a nivel algorítmico, para alterar los datos intermedios sensibles con una máscara de manera reversible. A diferencia del enmascaramiento lineal, las operaciones no lineales que ampliamente existen en criptografías modernas son difíciles de enmascarar. Dicho método de ocultación, que ha sido verificado como una solución efectiva, comprende principalmente la codificación en doble carril, que está ideado especialmente para aplanar o eliminar la fuga dependiente de dato en potencia o en EM. En esta tesis doctoral, además de la descripción de las metodologías de ataque, se han dedicado grandes esfuerzos sobre la estructura del prototipo de la lógica propuesta, con el fin de realizar investigaciones enfocadas a la seguridad sobre contramedidas de arquitectura a nivel lógico. Una característica de SCA reside en el formato de las fuentes de fugas. Un típico ataque de canal lateral se refiere al análisis basado en la potencia, donde la capacidad fundamental del transistor MOS y otras capacidades parásitas son las fuentes esenciales de fugas. Por lo tanto, una lógica robusta resistente a SCA debe eliminar o mitigar las fugas de estas micro-unidades, como las puertas lógicas básicas, los puertos I/O y las rutas. Las herramientas EDA proporcionadas por los vendedores manipulan la lógica desde un nivel más alto, en lugar de realizarlo desde el nivel de puerta, donde las fugas de canal lateral se manifiestan. Por lo tanto, las implementaciones clásicas apenas satisfacen estas necesidades e inevitablemente atrofian el prototipo. Por todo ello, la implementación de un esquema de diseño personalizado y flexible ha de ser tomado en cuenta. En esta tesis se presenta el diseño y la implementación de una lógica innovadora para contrarrestar SCA, en la que se abordan 3 aspectos fundamentales: I. Se basa en ocultar la estrategia sobre el circuito en doble carril a nivel de puerta para obtener dinámicamente el equilibrio de las fugas en las capas inferiores; II. Esta lógica explota las características de la arquitectura de las FPGAs, para reducir al mínimo el gasto de recursos en la implementación; III. Se apoya en un conjunto de herramientas asistentes personalizadas, incorporadas al flujo genérico de diseño sobre FPGAs, con el fin de manipular los circuitos de forma automática. El kit de herramientas de diseño automático es compatible con la lógica de doble carril propuesta, para facilitar la aplicación práctica sobre la familia de FPGA del fabricante Xilinx. En este sentido, la metodología y las herramientas son flexibles para ser extendido a una amplia gama de aplicaciones en las que se desean obtener restricciones mucho más rígidas y sofisticadas a nivel de puerta o rutado. En esta tesis se realiza un gran esfuerzo para facilitar el proceso de implementación y reparación de lógica de doble carril genérica. La viabilidad de las soluciones propuestas es validada mediante la selección de algoritmos criptográficos ampliamente utilizados, y su evaluación exhaustiva en comparación con soluciones anteriores. Todas las propuestas están respaldadas eficazmente a través de ataques experimentales con el fin de validar las ventajas de seguridad del sistema. El presente trabajo de investigación tiene la intención de cerrar la brecha entre las barreras de implementación y la aplicación efectiva de lógica de doble carril. En esencia, a lo largo de esta tesis se describirá un conjunto de herramientas de implementación para FPGAs que se han desarrollado para trabajar junto con el flujo de diseño genérico de las mismas, con el fin de lograr crear de forma innovadora la lógica de doble carril. Un nuevo enfoque en el ámbito de la seguridad en el cifrado se propone para obtener personalización, automatización y flexibilidad en el prototipo de circuito de bajo nivel con granularidad fina. Las principales contribuciones del presente trabajo de investigación se resumen brevemente a continuación: Lógica de Precharge Absorbed-DPL logic: El uso de la conversión de netlist para reservar LUTs libres para ejecutar la señal de precharge y Ex en una lógica DPL. Posicionamiento entrelazado Row-crossed con pares idénticos de rutado en redes de doble carril, lo que ayuda a aumentar la resistencia frente a la medición EM selectiva y mitigar los impactos de las variaciones de proceso. Ejecución personalizada y herramientas de conversión automática para la generación de redes idénticas para la lógica de doble carril propuesta. (a) Para detectar y reparar conflictos en las conexiones; (b) Detectar y reparar las rutas asimétricas. (c) Para ser utilizado en otras lógicas donde se requiere un control estricto de las interconexiones en aplicaciones basadas en Xilinx. Plataforma CPA de pruebas personalizadas para el análisis de EM y potencia, incluyendo la construcción de dicha plataforma, el método de medición y análisis de los ataques. Análisis de tiempos para cuantificar los niveles de seguridad. División de Seguridad en la conversión parcial de un sistema de cifrado complejo para reducir los costes de la protección. Prueba de concepto de un sistema de calefacción auto-adaptativo para mitigar los impactos eléctricos debido a la variación del proceso de silicio de manera dinámica. La presente tesis doctoral se encuentra organizada tal y como se detalla a continuación: En el capítulo 1 se abordan los fundamentos de los ataques de canal lateral, que abarca desde conceptos básicos de teoría de modelos de análisis, además de la implementación de la plataforma y la ejecución de los ataques. En el capítulo 2 se incluyen las estrategias de resistencia SCA contra los ataques de potencia diferencial y de EM. Además de ello, en este capítulo se propone una lógica en doble carril compacta y segura como contribución de gran relevancia, así como también se presentará la transformación lógica basada en un diseño a nivel de puerta. Por otra parte, en el Capítulo 3 se abordan los desafíos relacionados con la implementación de lógica en doble carril genérica. Así mismo, se describirá un flujo de diseño personalizado para resolver los problemas de aplicación junto con una herramienta de desarrollo automático de aplicaciones propuesta, para mitigar las barreras de diseño y facilitar los procesos. En el capítulo 4 se describe de forma detallada la elaboración e implementación de las herramientas propuestas. Por otra parte, la verificación y validaciones de seguridad de la lógica propuesta, así como un sofisticado experimento de verificación de la seguridad del rutado, se describen en el capítulo 5. Por último, un resumen de las conclusiones de la tesis y las perspectivas como líneas futuras se incluyen en el capítulo 6. Con el fin de profundizar en el contenido de la tesis doctoral, cada capítulo se describe de forma más detallada a continuación: En el capítulo 1 se introduce plataforma de implementación hardware además las teorías básicas de ataque de canal lateral, y contiene principalmente: (a) La arquitectura genérica y las características de la FPGA a utilizar, en particular la Xilinx Virtex-5; (b) El algoritmo de cifrado seleccionado (un módulo comercial Advanced Encryption Standard (AES)); (c) Los elementos esenciales de los métodos de canal lateral, que permiten revelar las fugas de disipación correlacionadas con los comportamientos internos; y el método para recuperar esta relación entre las fluctuaciones físicas en los rastros de canal lateral y los datos internos procesados; (d) Las configuraciones de las plataformas de pruebas de potencia / EM abarcadas dentro de la presente tesis. El contenido de esta tesis se amplia y profundiza a partir del capítulo 2, en el cual se abordan varios aspectos claves. En primer lugar, el principio de protección de la compensación dinámica de la lógica genérica de precarga de doble carril (Dual-rail Precharge Logic-DPL) se explica mediante la descripción de los elementos compensados a nivel de puerta. En segundo lugar, la lógica PA-DPL es propuesta como aportación original, detallando el protocolo de la lógica y un caso de aplicación. En tercer lugar, dos flujos de diseño personalizados se muestran para realizar la conversión de doble carril. Junto con ello, se aclaran las definiciones técnicas relacionadas con la manipulación por encima de la netlist a nivel de LUT. Finalmente, una breve discusión sobre el proceso global se aborda en la parte final del capítulo. El Capítulo 3 estudia los principales retos durante la implementación de DPLs en FPGAs. El nivel de seguridad de las soluciones de resistencia a SCA encontradas en el estado del arte se ha degenerado debido a las barreras de implantación a través de herramientas EDA convencionales. En el escenario de la arquitectura FPGA estudiada, se discuten los problemas de los formatos de doble carril, impactos parásitos, sesgo tecnológico y la viabilidad de implementación. De acuerdo con estas elaboraciones, se plantean dos problemas: Cómo implementar la lógica propuesta sin penalizar los niveles de seguridad, y cómo manipular un gran número de celdas y automatizar el proceso. El PA-DPL propuesto en el capítulo 2 se valida con una serie de iniciativas, desde características estructurales como doble carril entrelazado o redes de rutado clonadas, hasta los métodos de aplicación tales como las herramientas de personalización y automatización de EDA. Por otra parte, un sistema de calefacción auto-adaptativo es representado y aplicado a una lógica de doble núcleo, con el fin de ajustar alternativamente la temperatura local para equilibrar los impactos negativos de la variación del proceso durante la operación en tiempo real. El capítulo 4 se centra en los detalles de la implementación del kit de herramientas. Desarrollado sobre una API third-party, el kit de herramientas personalizado es capaz de manipular los elementos de la lógica de circuito post P&R ncd (una versión binaria ilegible del xdl) convertido al formato XDL Xilinx. El mecanismo y razón de ser del conjunto de instrumentos propuestos son cuidadosamente descritos, que cubre la detección de enrutamiento y los enfoques para la reparación. El conjunto de herramientas desarrollado tiene como objetivo lograr redes de enrutamiento estrictamente idénticos para la lógica de doble carril, tanto para posicionamiento separado como para el entrelazado. Este capítulo particularmente especifica las bases técnicas para apoyar las implementaciones en los dispositivos de Xilinx y su flexibilidad para ser utilizado sobre otras aplicaciones. El capítulo 5 se enfoca en la aplicación de los casos de estudio para la validación de los grados de seguridad de la lógica propuesta. Se discuten los problemas técnicos detallados durante la ejecución y algunas nuevas técnicas de implementación. (a) Se discute el impacto en el proceso de posicionamiento de la lógica utilizando el kit de herramientas propuesto. Diferentes esquemas de implementación, tomando en cuenta la optimización global en seguridad y coste, se verifican con los experimentos con el fin de encontrar los planes de posicionamiento y reparación optimizados; (b) las validaciones de seguridad se realizan con los métodos de correlación y análisis de tiempo; (c) Una táctica asintótica se aplica a un núcleo AES sobre BCDL estructurado para validar de forma sofisticada el impacto de enrutamiento sobre métricas de seguridad; (d) Los resultados preliminares utilizando el sistema de calefacción auto-adaptativa sobre la variación del proceso son mostrados; (e) Se introduce una aplicación práctica de las herramientas para un diseño de cifrado completa. Capítulo 6 incluye el resumen general del trabajo presentado dentro de esta tesis doctoral. Por último, una breve perspectiva del trabajo futuro se expone, lo que puede ampliar el potencial de utilización de las contribuciones de esta tesis a un alcance más allá de los dominios de la criptografía en FPGAs. ABSTRACT This PhD thesis mainly concentrates on countermeasure techniques related to the Side Channel Attack (SCA), which has been put forward to academic exploitations since 17 years ago. The related research has seen a remarkable growth in the past decades, while the design of solid and efficient protection still curiously remain as an open research topic where more reliable initiatives are required for personal information privacy, enterprise and national data protections. The earliest documented usage of secret code can be traced back to around 1700 B.C., when the hieroglyphs in ancient Egypt are scribed in inscriptions. Information security always gained serious attention from diplomatic or military intelligence transmission. Due to the rapid evolvement of modern communication technique, crypto solution was first incorporated by electronic signal to ensure the confidentiality, integrity, availability, authenticity and non-repudiation of the transmitted contexts over unsecure cable or wireless channels. Restricted to the computation power before computer era, simple encryption tricks were practically sufficient to conceal information. However, algorithmic vulnerabilities can be excavated to restore the encoding rules with affordable efforts. This fact motivated the development of modern cryptography, aiming at guarding information system by complex and advanced algorithms. The appearance of computers has greatly pushed forward the invention of robust cryptographies, which efficiently offers resistance relying on highly strengthened computing capabilities. Likewise, advanced cryptanalysis has greatly driven the computing technologies in turn. Nowadays, the information world has been involved into a crypto world, protecting any fields by pervasive crypto solutions. These approaches are strong because of the optimized mergence between modern mathematical theories and effective hardware practices, being capable of implement crypto theories into various platforms (microprocessor, ASIC, FPGA, etc). Security needs from industries are actually the major driving metrics in electronic design, aiming at promoting the construction of systems with high performance without sacrificing security. Yet a vulnerability in practical implementation found by Prof. Paul Kocher, et al in 1996 implies that modern digital circuits are inherently vulnerable to an unconventional attack approach, which was named as side-channel attack since then from its analysis source. Critical suspicions to theoretically sound modern crypto algorithms surfaced almost immediately after this discovery. To be specifically, digital circuits typically consist of a great number of essential logic elements (as MOS - Metal Oxide Semiconductor), built upon a silicon substrate during the fabrication. Circuit logic is realized relying on the countless switch actions of these cells. This mechanism inevitably results in featured physical emanation that can be properly measured and correlated with internal circuit behaviors. SCAs can be used to reveal the confidential data (e.g. crypto-key), analyze the logic architecture, timing and even inject malicious faults to the circuits that are implemented in hardware system, like FPGA, ASIC, smart Card. Using various comparison solutions between the predicted leakage quantity and the measured leakage, secrets can be reconstructed at much less expense of time and computation. To be precisely, SCA basically encloses a wide range of attack types, typically as the analyses of power consumption or electromagnetic (EM) radiation. Both of them rely on statistical analyses, and hence require a number of samples. The crypto algorithms are not intrinsically fortified with SCA-resistance. Because of the severity, much attention has to be taken into the implementation so as to assemble countermeasures to camouflage the leakages via "side channels". Countermeasures against SCA are evolving along with the development of attack techniques. The physical characteristics requires countermeasures over physical layer, which can be generally classified into intrinsic and extrinsic vectors. Extrinsic countermeasures are executed to confuse the attacker by integrating noise, misalignment to the intra activities. Comparatively, intrinsic countermeasures are built into the algorithm itself, to modify the implementation for minimizing the measurable leakage, or making them not sensitive any more. Hiding and Masking are two typical techniques in this category. Concretely, masking applies to the algorithmic level, to alter the sensitive intermediate values with a mask in reversible ways. Unlike the linear masking, non-linear operations that widely exist in modern cryptographies are difficult to be masked. Approved to be an effective counter solution, hiding method mainly mentions dual-rail logic, which is specially devised for flattening or removing the data-dependent leakage in power or EM signatures. In this thesis, apart from the context describing the attack methodologies, efforts have also been dedicated to logic prototype, to mount extensive security investigations to countermeasures on logic-level. A characteristic of SCA resides on the format of leak sources. Typical side-channel attack concerns the power based analysis, where the fundamental capacitance from MOS transistors and other parasitic capacitances are the essential leak sources. Hence, a robust SCA-resistant logic must eliminate or mitigate the leakages from these micro units, such as basic logic gates, I/O ports and routings. The vendor provided EDA tools manipulate the logic from a higher behavioral-level, rather than the lower gate-level where side-channel leakage is generated. So, the classical implementations barely satisfy these needs and inevitably stunt the prototype. In this case, a customized and flexible design scheme is appealing to be devised. This thesis profiles an innovative logic style to counter SCA, which mainly addresses three major aspects: I. The proposed logic is based on the hiding strategy over gate-level dual-rail style to dynamically overbalance side-channel leakage from lower circuit layer; II. This logic exploits architectural features of modern FPGAs, to minimize the implementation expenses; III. It is supported by a set of assistant custom tools, incorporated by the generic FPGA design flow, to have circuit manipulations in an automatic manner. The automatic design toolkit supports the proposed dual-rail logic, facilitating the practical implementation on Xilinx FPGA families. While the methodologies and the tools are flexible to be expanded to a wide range of applications where rigid and sophisticated gate- or routing- constraints are desired. In this thesis a great effort is done to streamline the implementation workflow of generic dual-rail logic. The feasibility of the proposed solutions is validated by selected and widely used crypto algorithm, for thorough and fair evaluation w.r.t. prior solutions. All the proposals are effectively verified by security experiments. The presented research work attempts to solve the implementation troubles. The essence that will be formalized along this thesis is that a customized execution toolkit for modern FPGA systems is developed to work together with the generic FPGA design flow for creating innovative dual-rail logic. A method in crypto security area is constructed to obtain customization, automation and flexibility in low-level circuit prototype with fine-granularity in intractable routings. Main contributions of the presented work are summarized next: Precharge Absorbed-DPL logic: Using the netlist conversion to reserve free LUT inputs to execute the Precharge and Ex signal in a dual-rail logic style. A row-crossed interleaved placement method with identical routing pairs in dual-rail networks, which helps to increase the resistance against selective EM measurement and mitigate the impacts from process variations. Customized execution and automatic transformation tools for producing identical networks for the proposed dual-rail logic. (a) To detect and repair the conflict nets; (b) To detect and repair the asymmetric nets. (c) To be used in other logics where strict network control is required in Xilinx scenario. Customized correlation analysis testbed for EM and power attacks, including the platform construction, measurement method and attack analysis. A timing analysis based method for quantifying the security grades. A methodology of security partitions of complex crypto systems for reducing the protection cost. A proof-of-concept self-adaptive heating system to mitigate electrical impacts over process variations in dynamic dual-rail compensation manner. The thesis chapters are organized as follows: Chapter 1 discusses the side-channel attack fundamentals, which covers from theoretic basics to analysis models, and further to platform setup and attack execution. Chapter 2 centers to SCA-resistant strategies against generic power and EM attacks. In this chapter, a major contribution, a compact and secure dual-rail logic style, will be originally proposed. The logic transformation based on bottom-layer design will be presented. Chapter 3 is scheduled to elaborate the implementation challenges of generic dual-rail styles. A customized design flow to solve the implementation problems will be described along with a self-developed automatic implementation toolkit, for mitigating the design barriers and facilitating the processes. Chapter 4 will originally elaborate the tool specifics and construction details. The implementation case studies and security validations for the proposed logic style, as well as a sophisticated routing verification experiment, will be described in Chapter 5. Finally, a summary of thesis conclusions and perspectives for future work are included in Chapter 5. To better exhibit the thesis contents, each chapter is further described next: Chapter 1 provides the introduction of hardware implementation testbed and side-channel attack fundamentals, and mainly contains: (a) The FPGA generic architecture and device features, particularly of Virtex-5 FPGA; (b) The selected crypto algorithm - a commercially and extensively used Advanced Encryption Standard (AES) module - is detailed; (c) The essentials of Side-Channel methods are profiled. It reveals the correlated dissipation leakage to the internal behaviors, and the method to recover this relationship between the physical fluctuations in side-channel traces and the intra processed data; (d) The setups of the power/EM testing platforms enclosed inside the thesis work are given. The content of this thesis is expanded and deepened from chapter 2, which is divided into several aspects. First, the protection principle of dynamic compensation of the generic dual-rail precharge logic is explained by describing the compensated gate-level elements. Second, the novel DPL is originally proposed by detailing the logic protocol and an implementation case study. Third, a couple of custom workflows are shown next for realizing the rail conversion. Meanwhile, the technical definitions that are about to be manipulated above LUT-level netlist are clarified. A brief discussion about the batched process is given in the final part. Chapter 3 studies the implementation challenges of DPLs in FPGAs. The security level of state-of-the-art SCA-resistant solutions are decreased due to the implementation barriers using conventional EDA tools. In the studied FPGA scenario, problems are discussed from dual-rail format, parasitic impact, technological bias and implementation feasibility. According to these elaborations, two problems arise: How to implement the proposed logic without crippling the security level; and How to manipulate a large number of cells and automate the transformation. The proposed PA-DPL in chapter 2 is legalized with a series of initiatives, from structures to implementation methods. Furthermore, a self-adaptive heating system is depicted and implemented to a dual-core logic, assumed to alternatively adjust local temperature for balancing the negative impacts from silicon technological biases on real-time. Chapter 4 centers to the toolkit system. Built upon a third-party Application Program Interface (API) library, the customized toolkit is able to manipulate the logic elements from post P&R circuit (an unreadable binary version of the xdl one) converted to Xilinx xdl format. The mechanism and rationale of the proposed toolkit are carefully convoyed, covering the routing detection and repairing approaches. The developed toolkit aims to achieve very strictly identical routing networks for dual-rail logic both for separate and interleaved placement. This chapter particularly specifies the technical essentials to support the implementations in Xilinx devices and the flexibility to be expanded to other applications. Chapter 5 focuses on the implementation of the case studies for validating the security grades of the proposed logic style from the proposed toolkit. Comprehensive implementation techniques are discussed. (a) The placement impacts using the proposed toolkit are discussed. Different execution schemes, considering the global optimization in security and cost, are verified with experiments so as to find the optimized placement and repair schemes; (b) Security validations are realized with correlation, timing methods; (c) A systematic method is applied to a BCDL structured module to validate the routing impact over security metric; (d) The preliminary results using the self-adaptive heating system over process variation is given; (e) A practical implementation of the proposed toolkit to a large design is introduced. Chapter 6 includes the general summary of the complete work presented inside this thesis. Finally, a brief perspective for the future work is drawn which might expand the potential utilization of the thesis contributions to a wider range of implementation domains beyond cryptography on FPGAs.
Resumo:
Circular enviada por Mateo Valdemoros, primer Jefe Político Superior de Valencia, a todos los Ayuntamientos de la provincia