919 resultados para Higher Order Thinking


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The attention deficit/hyperactivity disorder (ADHD) shows an increased prevalence in arrested offenders compared to the normal population. The aim of the present study was to investigate whether ADHD symptoms are a major risk factor for criminal behaviour, or whether further deficits, mainly abnormalities in emotion-processing, have to be considered as important additional factors that promote delinquency in the presence of ADHD symptomatology. Event related potentials (ERPs) of 13 non-delinquent and 13 delinquent subjects with ADHD and 13 controls were compared using a modified visual Go/Nogo continuous performance task (VCPT) and a newly developed version of the visual CPT that additionally requires emotional evaluation (ECPT). ERPs were analyzed regarding their topographies and Global Field Power (GFP). Offenders with ADHD differed from non-delinquent subjects with ADHD in the ERPs representing higher-order visual processing of objects and faces (N170) and facial affect (P200), and in late monitoring and evaluative functions (LPC) of behavioural response inhibition. Concerning neural activity thought to reflect the allocation of neural resources and cognitive processing capability (P300 Go), response inhibition (P300 Nogo), and attention/expectancy (CNV), deviances were observable in both ADHD groups and may thus be attributed to ADHD rather than to delinquency. In conclusion, ADHD symptomatology may be a risk factor for delinquency, since some neural information processing deficits found in ADHD seemed to be even more pronounced in offenders with ADHD. However, our results suggest additional risk factors consisting of deviant higher-order visual processing, especially of facial affect, as well as abnormalities in monitoring and evaluative functions of response inhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined compulsive-like behaviors (CLBs) which are higher-order types of Repetitive Behaviors And Restricted Interests (RBRIs) in typically developing children in Turkey. Caregivers of 1,204 children between 8 and 72 months were interviewed with Childhood Routines Inventory (CRI) by trained interviewers in a cross-sectional survey. Factor analysis of the CRI revealed two factor structures comprising "just right behaviors" and "repetitive/sensory sensitivity behaviors". CLB frequency peaked at 2-4 years with declines after age four. In contrast to the previous CRI studies reporting no gender difference, CLBs were more common in males in 12-23 and 48-59 month age groups on both total CLB frequency and repetitive/sensory sensitivity behaviors. Also ages of onsets for CRI items were somewhat later than reported in other samples. Our findings supported the findings of the previous CRI studies while also revealing new perspectives in need of further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical approaches to evaluate higher order SNP-SNP and SNP-environment interactions are critical in genetic association studies, as susceptibility to complex disease is likely to be related to the interaction of multiple SNPs and environmental factors. Logic regression (Kooperberg et al., 2001; Ruczinski et al., 2003) is one such approach, where interactions between SNPs and environmental variables are assessed in a regression framework, and interactions become part of the model search space. In this manuscript we extend the logic regression methodology, originally developed for cohort and case-control studies, for studies of trios with affected probands. Trio logic regression accounts for the linkage disequilibrium (LD) structure in the genotype data, and accommodates missing genotypes via haplotype-based imputation. We also derive an efficient algorithm to simulate case-parent trios where genetic risk is determined via epistatic interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies on motion perception revealed motion-processing brain areas sensitive to changes in luminance and texture (low-level) and changes in salience (high-level). The present functional magnetic resonance imaging (fMRI) study focused on motion standstill. This phenomenon, occurring at fast presentation frequencies of visual moving objects that are perceived as static, has not been previously explored by neuroimaging techniques. Thirteen subjects were investigated while perceiving apparent motion at 4 Hz, at 30 Hz (motion standstill), isoluminant static and flickering stimuli, fixation cross, and blank screen, presented randomly and balanced for rapid event-related fMRI design. Blood oxygenation level-dependent (BOLD) signal in the occipito-temporal brain region MT/V5 increased during apparent motion perception. Here we could demonstrate that brain areas like the posterior part of the right inferior parietal lobule (IPL) demonstrated higher BOLD-signal during motion standstill. These findings suggest that the activation of higher-order motion areas is elicited by apparent motion at high presentation rates (motion standstill). We interpret this observation as a manifestation of an orienting reaction in IPL towards stimulus motion that might be detected but not resolved by other motion-processing areas (i.e., MT/V5).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patients with schizophrenia spectrum disorders often maintain deviating views on cause-effect relationships, especially when positive and disorganization symptoms are manifest. Altered perceived causality is prominent in delusional ideation, in ideas of reference, and in the mentalizing ability (theory of mind [ToM]) of patients. Perceiving causal relationships may be understood either as higher order cognitive reasoning or as low-level information processing. In the present study, perception of causality was investigated as a low-level, preattentional capability similar to gestalt-like perceptual organization. Thirty-one patients (24 men and 7 women with mean age 27.7 years) and the same number of healthy control subjects matched to patients with respect to age and sex were tested. A visual paradigm was used in which 2 identical discs move, from opposite sides of a monitor, steadily toward and then past one another. Their coincidence generates an ambiguous, bistable percept (discs either "stream through" or "bounce off" one another). The bouncing perception, ie, perceived causality, is enhanced when auditory stimuli are presented at the time of coincidence. Psychopathology was measured using the Positive and Negative Syndrome Scale. It was found that positive symptoms were strongly associated with increased perceived causality and disorganization with attenuated perceived causality. Patients in general were not significantly different from controls, but symptom subgroups showed specifically altered perceived causality. Perceived causality as a basic preattentional process may contribute to higher order cognitive alterations and ToM deficiencies. It is suggested that cognitive remediation therapy should address both increased and reduced perception of causality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschl's gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimal temporal window of intravenous (IV) computed tomography (CT) cholangiography was prospectively determined. Fifteen volunteers (eight women, seven men; mean age, 38 years) underwent dynamic CT cholangiography. Two unenhanced images were acquired at the porta hepatis. Starting 5 min after initiation of IV contrast infusion (20 ml iodipamide meglumine 52%), 15 pairs of images at 5-min intervals were obtained. Attenuation of the extrahepatic bile duct (EBD) and the liver parenchyma was measured. Two readers graded visualization of the higher-order biliary branches. The first biliary opacification in the EBD occurred between 15 and 25 min (mean, 22.3 min +/- 3.2) after initiation of the contrast agent. Biliary attenuation plateaued between the 35- and the 75-min time points. Maximum hepatic parenchymal enhancement was 18.5 HU +/- 2.7. Twelve subjects demonstrated poor or non-visualization of higher-order biliary branches; three showed good or excellent visualization. Body weight and both biliary attenuation and visualization of the higher-order biliary branches correlated significantly (P<0.05). For peak enhancement of the biliary tree, CT cholangiography should be performed no earlier than 35 min after initiation of IV infusion. For a fixed contrast dose, superior visualization of the biliary system is achieved in subjects with lower body weight.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.